Loading…

Systems-Level Analysis of Nitrogen Starvation—Induced Modifications of Carbon Metabolism in a Chlamydomonas reinhardtii Starchless Mutant

To understand the molecular basis underlying increased triacylglycerol (TAG) accumulation in starchless (sta) Chlamydomonas reinhardtii mutants, we undertook comparative time-course transcriptomics of strains CC-4348 (sta6 mutant), CC-4349, a cell wall—deficient (cw) strain purported to represent th...

Full description

Saved in:
Bibliographic Details
Published in:The Plant cell 2013-11, Vol.25 (11), p.4305-4323
Main Authors: Blaby, Ian K., Glaesener, Anne G., Mettler, Tabea, Gibbon, Sorel T. Fitz, Gallaher, Sean D., Liu, Bensheng, Boyle, Nanette R., Kropat, Janette, Stitt, Mark, Johnson, Shannon, Benning, Christoph, Pellegrini, Matteo, Casero, David, Merchant, Sabeeha S.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-d8ce7a764dc11c1bbdf88cecf2128e4647ece7f2bef4da6cc3c4b96512f2b7f73
cites
container_end_page 4323
container_issue 11
container_start_page 4305
container_title The Plant cell
container_volume 25
creator Blaby, Ian K.
Glaesener, Anne G.
Mettler, Tabea
Gibbon, Sorel T. Fitz
Gallaher, Sean D.
Liu, Bensheng
Boyle, Nanette R.
Kropat, Janette
Stitt, Mark
Johnson, Shannon
Benning, Christoph
Pellegrini, Matteo
Casero, David
Merchant, Sabeeha S.
description To understand the molecular basis underlying increased triacylglycerol (TAG) accumulation in starchless (sta) Chlamydomonas reinhardtii mutants, we undertook comparative time-course transcriptomics of strains CC-4348 (sta6 mutant), CC-4349, a cell wall—deficient (cw) strain purported to represent the parental STA6 strain, and three independent STA6 strains generated by complementation of sta6 (CC-4565/STA6-C2, CC-4566/STA6-C4, and CC-4567/STA6-C6) in the context of N deprivation. Despite N starvation—induced dramatic remodeling of the transcriptome, there were relatively few differences (5 × 10 2 ) observed between sta6 and STA6, the most dramatic of which were increased abundance of transcripts encoding key regulated or rate-limiting steps in central carbon metabolism, specifically isocitrate lyase, malate synthase, transaldolase, fructose bisphosphatase and phosphoenolpyruvate carboxykinase (encoded by ICL1, MAS1, TAL1, FBP1, and PCK1 respectively), suggestive of increased carbon movement toward hexose-phosphate in sta6 by upregulation of the glyoxylate pathway and gluconeogenesis. Enzyme assays validated the increase in isocitrate lyase and malate synthase activities. Targeted metabolite analysis indicated increased succinate, malate, and Glc-6-P and decreased Fru-1,6-bisphosphate, illustrating the effect of these changes. Comparisons of independent data sets in multiple strains allowed the delineation of a sequence of events in the global N starvation response in C. reinhardtii, starting within minutes with the upregulation of alternative N assimilation routes and carbohydrate synthesis and subsequently a more gradual upregulation of genes encoding enzymes of TAG synthesis. Finally, genome resequencing analysis indicated that (1) the deletion in sta6 extends into the neighboring gene encoding respiratory burst oxidase, and (2) a commonly used STA6 strain (CC-4349) as well as the sequenced reference (CC-503) are not congenic with respect to sta6 (CC-4348), underscoring the importance of using complemented strains for more rigorous assignment of phenotype to genotype.
doi_str_mv 10.1105/tpc.113.117580
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3875720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23598474</jstor_id><sourcerecordid>23598474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-d8ce7a764dc11c1bbdf88cecf2128e4647ece7f2bef4da6cc3c4b96512f2b7f73</originalsourceid><addsrcrecordid>eNpVkT9vFDEQxVeIiPyBlg7kkmYT2-tdexuk6AQh0h0UAYnO8trjnKNd-7C9J11HT8sn5JPg3IUAheXRm5_fjPyq6iXB54Tg9iJvdCmacngr8JPqhLQNrWkvvj4tNWa4Zl1LjqvTlO4wxoST_ll1TBkVuBH9SfXjZpcyTKlewhZGdOnVuEsuoWDRR5djuAWPbrKKW5Vd8L--_7z2ZtZg0CoYZ53ey3t8oeIQPFpBVkMYXZqQ80ihxXpU086EKXiVUATn1yqa7NzeVq9HSAmt5qx8fl4dWTUmePFwn1Vf3r_7vPhQLz9dXS8ul7VmhObaCA1c8Y4ZTYgmw2CsKJK2lFABrGMcCmDpAJYZ1WndaDb05Rdo0bjlzVn19uC7mYcJjAafoxrlJrpJxZ0Mysn_O96t5W3YykbwllNcDN48GMTwbYaU5eSShnFUHsKcJGE95h3uxP2s8wOqY0gpgn0cQ7C8T1CWBEvRyEOC5cHrf5d7xP9EVoBXB-Au5RD_9pu2F4yz5jdHy6e6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490760687</pqid></control><display><type>article</type><title>Systems-Level Analysis of Nitrogen Starvation—Induced Modifications of Carbon Metabolism in a Chlamydomonas reinhardtii Starchless Mutant</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Blaby, Ian K. ; Glaesener, Anne G. ; Mettler, Tabea ; Gibbon, Sorel T. Fitz ; Gallaher, Sean D. ; Liu, Bensheng ; Boyle, Nanette R. ; Kropat, Janette ; Stitt, Mark ; Johnson, Shannon ; Benning, Christoph ; Pellegrini, Matteo ; Casero, David ; Merchant, Sabeeha S.</creator><creatorcontrib>Blaby, Ian K. ; Glaesener, Anne G. ; Mettler, Tabea ; Gibbon, Sorel T. Fitz ; Gallaher, Sean D. ; Liu, Bensheng ; Boyle, Nanette R. ; Kropat, Janette ; Stitt, Mark ; Johnson, Shannon ; Benning, Christoph ; Pellegrini, Matteo ; Casero, David ; Merchant, Sabeeha S.</creatorcontrib><description>To understand the molecular basis underlying increased triacylglycerol (TAG) accumulation in starchless (sta) Chlamydomonas reinhardtii mutants, we undertook comparative time-course transcriptomics of strains CC-4348 (sta6 mutant), CC-4349, a cell wall—deficient (cw) strain purported to represent the parental STA6 strain, and three independent STA6 strains generated by complementation of sta6 (CC-4565/STA6-C2, CC-4566/STA6-C4, and CC-4567/STA6-C6) in the context of N deprivation. Despite N starvation—induced dramatic remodeling of the transcriptome, there were relatively few differences (5 × 10 2 ) observed between sta6 and STA6, the most dramatic of which were increased abundance of transcripts encoding key regulated or rate-limiting steps in central carbon metabolism, specifically isocitrate lyase, malate synthase, transaldolase, fructose bisphosphatase and phosphoenolpyruvate carboxykinase (encoded by ICL1, MAS1, TAL1, FBP1, and PCK1 respectively), suggestive of increased carbon movement toward hexose-phosphate in sta6 by upregulation of the glyoxylate pathway and gluconeogenesis. Enzyme assays validated the increase in isocitrate lyase and malate synthase activities. Targeted metabolite analysis indicated increased succinate, malate, and Glc-6-P and decreased Fru-1,6-bisphosphate, illustrating the effect of these changes. Comparisons of independent data sets in multiple strains allowed the delineation of a sequence of events in the global N starvation response in C. reinhardtii, starting within minutes with the upregulation of alternative N assimilation routes and carbohydrate synthesis and subsequently a more gradual upregulation of genes encoding enzymes of TAG synthesis. Finally, genome resequencing analysis indicated that (1) the deletion in sta6 extends into the neighboring gene encoding respiratory burst oxidase, and (2) a commonly used STA6 strain (CC-4349) as well as the sequenced reference (CC-503) are not congenic with respect to sta6 (CC-4348), underscoring the importance of using complemented strains for more rigorous assignment of phenotype to genotype.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.113.117580</identifier><identifier>PMID: 24280389</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Acetates ; Acetates - metabolism ; Carbohydrate Metabolism ; Carbon - metabolism ; Cell Wall - genetics ; Cell Wall - metabolism ; Chlamydomonas reinhardtii - genetics ; Chlamydomonas reinhardtii - metabolism ; Datasets ; Enzymes ; Enzymes - genetics ; Enzymes - metabolism ; Genes ; Genome, Plant ; Genomes ; Large-Scale Biology ; LARGE-SCALE BIOLOGY ARTICLE ; Lipid metabolism ; Lipids ; Messenger RNA ; Molecular Sequence Data ; Mutation ; Nitrogen - metabolism ; Plant cells ; Polymorphism, Single Nucleotide ; Reproducibility of Results ; Starch - genetics ; Starch - metabolism ; Starches ; Transcriptome</subject><ispartof>The Plant cell, 2013-11, Vol.25 (11), p.4305-4323</ispartof><rights>2013 American Society of Plant Biologists</rights><rights>2013 American Society of Plant Biologists. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-d8ce7a764dc11c1bbdf88cecf2128e4647ece7f2bef4da6cc3c4b96512f2b7f73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23598474$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23598474$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24280389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blaby, Ian K.</creatorcontrib><creatorcontrib>Glaesener, Anne G.</creatorcontrib><creatorcontrib>Mettler, Tabea</creatorcontrib><creatorcontrib>Gibbon, Sorel T. Fitz</creatorcontrib><creatorcontrib>Gallaher, Sean D.</creatorcontrib><creatorcontrib>Liu, Bensheng</creatorcontrib><creatorcontrib>Boyle, Nanette R.</creatorcontrib><creatorcontrib>Kropat, Janette</creatorcontrib><creatorcontrib>Stitt, Mark</creatorcontrib><creatorcontrib>Johnson, Shannon</creatorcontrib><creatorcontrib>Benning, Christoph</creatorcontrib><creatorcontrib>Pellegrini, Matteo</creatorcontrib><creatorcontrib>Casero, David</creatorcontrib><creatorcontrib>Merchant, Sabeeha S.</creatorcontrib><title>Systems-Level Analysis of Nitrogen Starvation—Induced Modifications of Carbon Metabolism in a Chlamydomonas reinhardtii Starchless Mutant</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>To understand the molecular basis underlying increased triacylglycerol (TAG) accumulation in starchless (sta) Chlamydomonas reinhardtii mutants, we undertook comparative time-course transcriptomics of strains CC-4348 (sta6 mutant), CC-4349, a cell wall—deficient (cw) strain purported to represent the parental STA6 strain, and three independent STA6 strains generated by complementation of sta6 (CC-4565/STA6-C2, CC-4566/STA6-C4, and CC-4567/STA6-C6) in the context of N deprivation. Despite N starvation—induced dramatic remodeling of the transcriptome, there were relatively few differences (5 × 10 2 ) observed between sta6 and STA6, the most dramatic of which were increased abundance of transcripts encoding key regulated or rate-limiting steps in central carbon metabolism, specifically isocitrate lyase, malate synthase, transaldolase, fructose bisphosphatase and phosphoenolpyruvate carboxykinase (encoded by ICL1, MAS1, TAL1, FBP1, and PCK1 respectively), suggestive of increased carbon movement toward hexose-phosphate in sta6 by upregulation of the glyoxylate pathway and gluconeogenesis. Enzyme assays validated the increase in isocitrate lyase and malate synthase activities. Targeted metabolite analysis indicated increased succinate, malate, and Glc-6-P and decreased Fru-1,6-bisphosphate, illustrating the effect of these changes. Comparisons of independent data sets in multiple strains allowed the delineation of a sequence of events in the global N starvation response in C. reinhardtii, starting within minutes with the upregulation of alternative N assimilation routes and carbohydrate synthesis and subsequently a more gradual upregulation of genes encoding enzymes of TAG synthesis. Finally, genome resequencing analysis indicated that (1) the deletion in sta6 extends into the neighboring gene encoding respiratory burst oxidase, and (2) a commonly used STA6 strain (CC-4349) as well as the sequenced reference (CC-503) are not congenic with respect to sta6 (CC-4348), underscoring the importance of using complemented strains for more rigorous assignment of phenotype to genotype.</description><subject>Acetates</subject><subject>Acetates - metabolism</subject><subject>Carbohydrate Metabolism</subject><subject>Carbon - metabolism</subject><subject>Cell Wall - genetics</subject><subject>Cell Wall - metabolism</subject><subject>Chlamydomonas reinhardtii - genetics</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>Datasets</subject><subject>Enzymes</subject><subject>Enzymes - genetics</subject><subject>Enzymes - metabolism</subject><subject>Genes</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Large-Scale Biology</subject><subject>LARGE-SCALE BIOLOGY ARTICLE</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Messenger RNA</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Nitrogen - metabolism</subject><subject>Plant cells</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Reproducibility of Results</subject><subject>Starch - genetics</subject><subject>Starch - metabolism</subject><subject>Starches</subject><subject>Transcriptome</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkT9vFDEQxVeIiPyBlg7kkmYT2-tdexuk6AQh0h0UAYnO8trjnKNd-7C9J11HT8sn5JPg3IUAheXRm5_fjPyq6iXB54Tg9iJvdCmacngr8JPqhLQNrWkvvj4tNWa4Zl1LjqvTlO4wxoST_ll1TBkVuBH9SfXjZpcyTKlewhZGdOnVuEsuoWDRR5djuAWPbrKKW5Vd8L--_7z2ZtZg0CoYZ53ey3t8oeIQPFpBVkMYXZqQ80ihxXpU086EKXiVUATn1yqa7NzeVq9HSAmt5qx8fl4dWTUmePFwn1Vf3r_7vPhQLz9dXS8ul7VmhObaCA1c8Y4ZTYgmw2CsKJK2lFABrGMcCmDpAJYZ1WndaDb05Rdo0bjlzVn19uC7mYcJjAafoxrlJrpJxZ0Mysn_O96t5W3YykbwllNcDN48GMTwbYaU5eSShnFUHsKcJGE95h3uxP2s8wOqY0gpgn0cQ7C8T1CWBEvRyEOC5cHrf5d7xP9EVoBXB-Au5RD_9pu2F4yz5jdHy6e6</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Blaby, Ian K.</creator><creator>Glaesener, Anne G.</creator><creator>Mettler, Tabea</creator><creator>Gibbon, Sorel T. Fitz</creator><creator>Gallaher, Sean D.</creator><creator>Liu, Bensheng</creator><creator>Boyle, Nanette R.</creator><creator>Kropat, Janette</creator><creator>Stitt, Mark</creator><creator>Johnson, Shannon</creator><creator>Benning, Christoph</creator><creator>Pellegrini, Matteo</creator><creator>Casero, David</creator><creator>Merchant, Sabeeha S.</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131101</creationdate><title>Systems-Level Analysis of Nitrogen Starvation—Induced Modifications of Carbon Metabolism in a Chlamydomonas reinhardtii Starchless Mutant</title><author>Blaby, Ian K. ; Glaesener, Anne G. ; Mettler, Tabea ; Gibbon, Sorel T. Fitz ; Gallaher, Sean D. ; Liu, Bensheng ; Boyle, Nanette R. ; Kropat, Janette ; Stitt, Mark ; Johnson, Shannon ; Benning, Christoph ; Pellegrini, Matteo ; Casero, David ; Merchant, Sabeeha S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-d8ce7a764dc11c1bbdf88cecf2128e4647ece7f2bef4da6cc3c4b96512f2b7f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acetates</topic><topic>Acetates - metabolism</topic><topic>Carbohydrate Metabolism</topic><topic>Carbon - metabolism</topic><topic>Cell Wall - genetics</topic><topic>Cell Wall - metabolism</topic><topic>Chlamydomonas reinhardtii - genetics</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>Datasets</topic><topic>Enzymes</topic><topic>Enzymes - genetics</topic><topic>Enzymes - metabolism</topic><topic>Genes</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Large-Scale Biology</topic><topic>LARGE-SCALE BIOLOGY ARTICLE</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Messenger RNA</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Nitrogen - metabolism</topic><topic>Plant cells</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Reproducibility of Results</topic><topic>Starch - genetics</topic><topic>Starch - metabolism</topic><topic>Starches</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blaby, Ian K.</creatorcontrib><creatorcontrib>Glaesener, Anne G.</creatorcontrib><creatorcontrib>Mettler, Tabea</creatorcontrib><creatorcontrib>Gibbon, Sorel T. Fitz</creatorcontrib><creatorcontrib>Gallaher, Sean D.</creatorcontrib><creatorcontrib>Liu, Bensheng</creatorcontrib><creatorcontrib>Boyle, Nanette R.</creatorcontrib><creatorcontrib>Kropat, Janette</creatorcontrib><creatorcontrib>Stitt, Mark</creatorcontrib><creatorcontrib>Johnson, Shannon</creatorcontrib><creatorcontrib>Benning, Christoph</creatorcontrib><creatorcontrib>Pellegrini, Matteo</creatorcontrib><creatorcontrib>Casero, David</creatorcontrib><creatorcontrib>Merchant, Sabeeha S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blaby, Ian K.</au><au>Glaesener, Anne G.</au><au>Mettler, Tabea</au><au>Gibbon, Sorel T. Fitz</au><au>Gallaher, Sean D.</au><au>Liu, Bensheng</au><au>Boyle, Nanette R.</au><au>Kropat, Janette</au><au>Stitt, Mark</au><au>Johnson, Shannon</au><au>Benning, Christoph</au><au>Pellegrini, Matteo</au><au>Casero, David</au><au>Merchant, Sabeeha S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systems-Level Analysis of Nitrogen Starvation—Induced Modifications of Carbon Metabolism in a Chlamydomonas reinhardtii Starchless Mutant</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>25</volume><issue>11</issue><spage>4305</spage><epage>4323</epage><pages>4305-4323</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>To understand the molecular basis underlying increased triacylglycerol (TAG) accumulation in starchless (sta) Chlamydomonas reinhardtii mutants, we undertook comparative time-course transcriptomics of strains CC-4348 (sta6 mutant), CC-4349, a cell wall—deficient (cw) strain purported to represent the parental STA6 strain, and three independent STA6 strains generated by complementation of sta6 (CC-4565/STA6-C2, CC-4566/STA6-C4, and CC-4567/STA6-C6) in the context of N deprivation. Despite N starvation—induced dramatic remodeling of the transcriptome, there were relatively few differences (5 × 10 2 ) observed between sta6 and STA6, the most dramatic of which were increased abundance of transcripts encoding key regulated or rate-limiting steps in central carbon metabolism, specifically isocitrate lyase, malate synthase, transaldolase, fructose bisphosphatase and phosphoenolpyruvate carboxykinase (encoded by ICL1, MAS1, TAL1, FBP1, and PCK1 respectively), suggestive of increased carbon movement toward hexose-phosphate in sta6 by upregulation of the glyoxylate pathway and gluconeogenesis. Enzyme assays validated the increase in isocitrate lyase and malate synthase activities. Targeted metabolite analysis indicated increased succinate, malate, and Glc-6-P and decreased Fru-1,6-bisphosphate, illustrating the effect of these changes. Comparisons of independent data sets in multiple strains allowed the delineation of a sequence of events in the global N starvation response in C. reinhardtii, starting within minutes with the upregulation of alternative N assimilation routes and carbohydrate synthesis and subsequently a more gradual upregulation of genes encoding enzymes of TAG synthesis. Finally, genome resequencing analysis indicated that (1) the deletion in sta6 extends into the neighboring gene encoding respiratory burst oxidase, and (2) a commonly used STA6 strain (CC-4349) as well as the sequenced reference (CC-503) are not congenic with respect to sta6 (CC-4348), underscoring the importance of using complemented strains for more rigorous assignment of phenotype to genotype.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>24280389</pmid><doi>10.1105/tpc.113.117580</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2013-11, Vol.25 (11), p.4305-4323
issn 1040-4651
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3875720
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects Acetates
Acetates - metabolism
Carbohydrate Metabolism
Carbon - metabolism
Cell Wall - genetics
Cell Wall - metabolism
Chlamydomonas reinhardtii - genetics
Chlamydomonas reinhardtii - metabolism
Datasets
Enzymes
Enzymes - genetics
Enzymes - metabolism
Genes
Genome, Plant
Genomes
Large-Scale Biology
LARGE-SCALE BIOLOGY ARTICLE
Lipid metabolism
Lipids
Messenger RNA
Molecular Sequence Data
Mutation
Nitrogen - metabolism
Plant cells
Polymorphism, Single Nucleotide
Reproducibility of Results
Starch - genetics
Starch - metabolism
Starches
Transcriptome
title Systems-Level Analysis of Nitrogen Starvation—Induced Modifications of Carbon Metabolism in a Chlamydomonas reinhardtii Starchless Mutant
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systems-Level%20Analysis%20of%20Nitrogen%20Starvation%E2%80%94Induced%20Modifications%20of%20Carbon%20Metabolism%20in%20a%20Chlamydomonas%20reinhardtii%20Starchless%20Mutant&rft.jtitle=The%20Plant%20cell&rft.au=Blaby,%20Ian%20K.&rft.date=2013-11-01&rft.volume=25&rft.issue=11&rft.spage=4305&rft.epage=4323&rft.pages=4305-4323&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.113.117580&rft_dat=%3Cjstor_pubme%3E23598474%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-d8ce7a764dc11c1bbdf88cecf2128e4647ece7f2bef4da6cc3c4b96512f2b7f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1490760687&rft_id=info:pmid/24280389&rft_jstor_id=23598474&rfr_iscdi=true