Loading…
Antidiabetic Drug Metformin Prevents Progression of Pancreatic Cancer by Targeting in Part Cancer Stem Cells and mTOR Signaling
Abstract Epidemiologic studies have shown that diabetes mellitus is associated positively with increased risk of pancreatic ductal adenocarcinoma (PDAC), and recent meta-analysis studies showed that metformin, reduces the risk of pancreatic cancer (PC). We tested the effects of metformin on pancreat...
Saved in:
Published in: | Translational oncology 2013-12, Vol.6 (6), p.649-IN7 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Epidemiologic studies have shown that diabetes mellitus is associated positively with increased risk of pancreatic ductal adenocarcinoma (PDAC), and recent meta-analysis studies showed that metformin, reduces the risk of pancreatic cancer (PC). We tested the effects of metformin on pancreatic intraepithelial neoplasia (PanIN) and their progression to PDAC in p48Cre/+.LSL-KrasG12D/+ transgenic mice. Mice fed control diet showed 80% and 62% incidence of PDAC in males and females, respectively. Male mice showed 20% and 26%, and female mice showed 7% and 0% PDAC incidence with 1000- and 2000-ppm metformin treatments, respectively. Both doses of metformin decreased pancreatic tumor weights by 34% to 49% ( P < 0.03–0.001). The drug treatment caused suppression of PanIN 3 (carcinoma in situ ) lesions by 28% to 39% ( P < .002) and significant inhibition of carcinoma spread in the pancreas. The pancreatic tissue and/or serum of mice fed metformin showed a significant inhibition of mammalian target of rapamycin (mTOR), extracellular signal-regulated kinases (ERK), phosphorylated extracellular signal-regulated kinases (pErk), and insulin-like growth factor 1 (IGF-1) with an increase in phosphorylated 5′ adenosine monophosphate kinase (pAMPK), tuberous sclerosis complex 1 (TSC1, TSC2), C-protein and an autophagy related protein 2 (ATG2). The cancer stem cell (CSC) markers were significantly decreased ( P < 0.04–0.0002) in the pancreatic tissue. These results suggest that biologic effects of metformin are mediated through decreased CSC markers cluster of differentiation 44 (CD44 and CD133), aldehyde dehydrogenase isoform 1 (ALDH1), and epithelial cell adhesion molecule (EPCAM) and modulation of the mTOR signaling pathway. Our preclinical data indicate that metformin has significant potential for use in clinical trials for PC chemoprevention. |
---|---|
ISSN: | 1936-5233 1936-5233 |
DOI: | 10.1593/tlo.13556 |