Loading…

The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum

The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root‐borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxyspor...

Full description

Saved in:
Bibliographic Details
Published in:MicrobiologyOpen (Weinheim) 2013-12, Vol.2 (6), p.997-1009
Main Authors: Fujiwara, Kazuki, Iida, Yuichiro, Iwai, Takashi, Aoyama, Chihiro, Inukai, Ryuya, Ando, Akinori, Ogawa, Jun, Ohnishi, Jun, Terami, Fumihiro, Takano, Masao, Shinohara, Makoto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root‐borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root‐borne diseases. This study focused on the suppression of Fusarium wilt disease caused by the fungus Fusarium oxysporum. Our data indicated that the microbiota suppresses the disease by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum.
ISSN:2045-8827
2045-8827
DOI:10.1002/mbo3.140