Loading…

Analytical modeling of glucose biosensors based on carbon nanotubes

In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal co...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale research letters 2014-01, Vol.9 (1), p.33-33, Article 33
Main Authors: Pourasl, Ali H, Ahmadi, Mohammad Taghi, Rahmani, Meisam, Chin, Huei Chaeng, Lim, Cheng Siong, Ismail, Razali, Tan, Michael Loong Peng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c458t-bc499e7e832f4ad908d7bd70cda336ca2175fa310302a3207f105560ed74e1f73
cites cdi_FETCH-LOGICAL-c458t-bc499e7e832f4ad908d7bd70cda336ca2175fa310302a3207f105560ed74e1f73
container_end_page 33
container_issue 1
container_start_page 33
container_title Nanoscale research letters
container_volume 9
creator Pourasl, Ali H
Ahmadi, Mohammad Taghi
Rahmani, Meisam
Chin, Huei Chaeng
Lim, Cheng Siong
Ismail, Razali
Tan, Michael Loong Peng
description In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good and solid support for the immobilization of enzymes. The determination of glucose levels using biosensors, particularly in the medical diagnostics and food industries, is gaining mass appeal. Glucose biosensors detect the glucose molecule by catalyzing glucose to gluconic acid and hydrogen peroxide in the presence of oxygen. This action provides high accuracy and a quick detection rate. In this paper, a single-wall carbon nanotube field-effect transistor biosensor for glucose detection is analytically modeled. In the proposed model, the glucose concentration is presented as a function of gate voltage. Subsequently, the proposed model is compared with existing experimental data. A good consensus between the model and the experimental data is reported. The simulated data demonstrate that the analytical model can be employed with an electrochemical glucose sensor to predict the behavior of the sensing mechanism in biosensors.
doi_str_mv 10.1186/1556-276X-9-33
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3898395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3586002841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-bc499e7e832f4ad908d7bd70cda336ca2175fa310302a3207f105560ed74e1f73</originalsourceid><addsrcrecordid>eNptkc9LwzAUx4Mobk6vHqXgxUu3_GqTXIQx_AUDLwreQpqmtaNLZtIK--9N2RwqXvJC3ud9X977AnCJ4BQhns9QluUpZvlbKlJCjsD48HAc74KglGWMjMBZCCsIKYMsPwUjTCnmHPExWMytarddo1WbrF1p2sbWiauSuu21CyYpmnja4HxIChVMmTibaOWLGKyyrusLE87BSaXaYC72cQJe7-9eFo_p8vnhaTFfpppmvEsLTYUwzHCCK6pKAXnJipJBXSpCcq0wYlmlCIIEYkUwZBWCcRhoSkYNqhiZgNud7qYv1qbUxnZetXLjm7XyW-lUI39nbPMua_cpCReciCwK3OwFvPvoTejkugnatK2yxvVBIipwLnLKcESv_6Ar1_u4q0jlGY5inA_UdEdp70Lwpjp8BkE5-CMHO-RghxSSkFhw9XOEA_5tSARmOyDElK2N_9H3f8kvFAaaig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652953882</pqid></control><display><type>article</type><title>Analytical modeling of glucose biosensors based on carbon nanotubes</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>IngentaConnect Journals</source><source>PubMed Central</source><creator>Pourasl, Ali H ; Ahmadi, Mohammad Taghi ; Rahmani, Meisam ; Chin, Huei Chaeng ; Lim, Cheng Siong ; Ismail, Razali ; Tan, Michael Loong Peng</creator><creatorcontrib>Pourasl, Ali H ; Ahmadi, Mohammad Taghi ; Rahmani, Meisam ; Chin, Huei Chaeng ; Lim, Cheng Siong ; Ismail, Razali ; Tan, Michael Loong Peng</creatorcontrib><description>In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good and solid support for the immobilization of enzymes. The determination of glucose levels using biosensors, particularly in the medical diagnostics and food industries, is gaining mass appeal. Glucose biosensors detect the glucose molecule by catalyzing glucose to gluconic acid and hydrogen peroxide in the presence of oxygen. This action provides high accuracy and a quick detection rate. In this paper, a single-wall carbon nanotube field-effect transistor biosensor for glucose detection is analytically modeled. In the proposed model, the glucose concentration is presented as a function of gate voltage. Subsequently, the proposed model is compared with existing experimental data. A good consensus between the model and the experimental data is reported. The simulated data demonstrate that the analytical model can be employed with an electrochemical glucose sensor to predict the behavior of the sensing mechanism in biosensors.</description><identifier>ISSN: 1931-7573</identifier><identifier>ISSN: 1556-276X</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1186/1556-276X-9-33</identifier><identifier>PMID: 24428818</identifier><language>eng</language><publisher>New York: Springer New York</publisher><subject>Chemistry and Materials Science ; Materials Science ; Molecular Medicine ; Nano Express ; Nanochemistry ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering</subject><ispartof>Nanoscale research letters, 2014-01, Vol.9 (1), p.33-33, Article 33</ispartof><rights>Pourasl et al.; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>The Author(s) 2014</rights><rights>Copyright © 2014 Pourasl et al.; licensee Springer. 2014 Pourasl et al.; licensee Springer.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-bc499e7e832f4ad908d7bd70cda336ca2175fa310302a3207f105560ed74e1f73</citedby><cites>FETCH-LOGICAL-c458t-bc499e7e832f4ad908d7bd70cda336ca2175fa310302a3207f105560ed74e1f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1652953882/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1652953882?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24428818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pourasl, Ali H</creatorcontrib><creatorcontrib>Ahmadi, Mohammad Taghi</creatorcontrib><creatorcontrib>Rahmani, Meisam</creatorcontrib><creatorcontrib>Chin, Huei Chaeng</creatorcontrib><creatorcontrib>Lim, Cheng Siong</creatorcontrib><creatorcontrib>Ismail, Razali</creatorcontrib><creatorcontrib>Tan, Michael Loong Peng</creatorcontrib><title>Analytical modeling of glucose biosensors based on carbon nanotubes</title><title>Nanoscale research letters</title><addtitle>Nanoscale Res Lett</addtitle><addtitle>Nanoscale Res Lett</addtitle><description>In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good and solid support for the immobilization of enzymes. The determination of glucose levels using biosensors, particularly in the medical diagnostics and food industries, is gaining mass appeal. Glucose biosensors detect the glucose molecule by catalyzing glucose to gluconic acid and hydrogen peroxide in the presence of oxygen. This action provides high accuracy and a quick detection rate. In this paper, a single-wall carbon nanotube field-effect transistor biosensor for glucose detection is analytically modeled. In the proposed model, the glucose concentration is presented as a function of gate voltage. Subsequently, the proposed model is compared with existing experimental data. A good consensus between the model and the experimental data is reported. The simulated data demonstrate that the analytical model can be employed with an electrochemical glucose sensor to predict the behavior of the sensing mechanism in biosensors.</description><subject>Chemistry and Materials Science</subject><subject>Materials Science</subject><subject>Molecular Medicine</subject><subject>Nano Express</subject><subject>Nanochemistry</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><issn>1931-7573</issn><issn>1556-276X</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkc9LwzAUx4Mobk6vHqXgxUu3_GqTXIQx_AUDLwreQpqmtaNLZtIK--9N2RwqXvJC3ud9X977AnCJ4BQhns9QluUpZvlbKlJCjsD48HAc74KglGWMjMBZCCsIKYMsPwUjTCnmHPExWMytarddo1WbrF1p2sbWiauSuu21CyYpmnja4HxIChVMmTibaOWLGKyyrusLE87BSaXaYC72cQJe7-9eFo_p8vnhaTFfpppmvEsLTYUwzHCCK6pKAXnJipJBXSpCcq0wYlmlCIIEYkUwZBWCcRhoSkYNqhiZgNud7qYv1qbUxnZetXLjm7XyW-lUI39nbPMua_cpCReciCwK3OwFvPvoTejkugnatK2yxvVBIipwLnLKcESv_6Ar1_u4q0jlGY5inA_UdEdp70Lwpjp8BkE5-CMHO-RghxSSkFhw9XOEA_5tSARmOyDElK2N_9H3f8kvFAaaig</recordid><startdate>20140115</startdate><enddate>20140115</enddate><creator>Pourasl, Ali H</creator><creator>Ahmadi, Mohammad Taghi</creator><creator>Rahmani, Meisam</creator><creator>Chin, Huei Chaeng</creator><creator>Lim, Cheng Siong</creator><creator>Ismail, Razali</creator><creator>Tan, Michael Loong Peng</creator><general>Springer New York</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140115</creationdate><title>Analytical modeling of glucose biosensors based on carbon nanotubes</title><author>Pourasl, Ali H ; Ahmadi, Mohammad Taghi ; Rahmani, Meisam ; Chin, Huei Chaeng ; Lim, Cheng Siong ; Ismail, Razali ; Tan, Michael Loong Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-bc499e7e832f4ad908d7bd70cda336ca2175fa310302a3207f105560ed74e1f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemistry and Materials Science</topic><topic>Materials Science</topic><topic>Molecular Medicine</topic><topic>Nano Express</topic><topic>Nanochemistry</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pourasl, Ali H</creatorcontrib><creatorcontrib>Ahmadi, Mohammad Taghi</creatorcontrib><creatorcontrib>Rahmani, Meisam</creatorcontrib><creatorcontrib>Chin, Huei Chaeng</creatorcontrib><creatorcontrib>Lim, Cheng Siong</creatorcontrib><creatorcontrib>Ismail, Razali</creatorcontrib><creatorcontrib>Tan, Michael Loong Peng</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pourasl, Ali H</au><au>Ahmadi, Mohammad Taghi</au><au>Rahmani, Meisam</au><au>Chin, Huei Chaeng</au><au>Lim, Cheng Siong</au><au>Ismail, Razali</au><au>Tan, Michael Loong Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical modeling of glucose biosensors based on carbon nanotubes</atitle><jtitle>Nanoscale research letters</jtitle><stitle>Nanoscale Res Lett</stitle><addtitle>Nanoscale Res Lett</addtitle><date>2014-01-15</date><risdate>2014</risdate><volume>9</volume><issue>1</issue><spage>33</spage><epage>33</epage><pages>33-33</pages><artnum>33</artnum><issn>1931-7573</issn><issn>1556-276X</issn><eissn>1556-276X</eissn><abstract>In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good and solid support for the immobilization of enzymes. The determination of glucose levels using biosensors, particularly in the medical diagnostics and food industries, is gaining mass appeal. Glucose biosensors detect the glucose molecule by catalyzing glucose to gluconic acid and hydrogen peroxide in the presence of oxygen. This action provides high accuracy and a quick detection rate. In this paper, a single-wall carbon nanotube field-effect transistor biosensor for glucose detection is analytically modeled. In the proposed model, the glucose concentration is presented as a function of gate voltage. Subsequently, the proposed model is compared with existing experimental data. A good consensus between the model and the experimental data is reported. The simulated data demonstrate that the analytical model can be employed with an electrochemical glucose sensor to predict the behavior of the sensing mechanism in biosensors.</abstract><cop>New York</cop><pub>Springer New York</pub><pmid>24428818</pmid><doi>10.1186/1556-276X-9-33</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-7573
ispartof Nanoscale research letters, 2014-01, Vol.9 (1), p.33-33, Article 33
issn 1931-7573
1556-276X
1556-276X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3898395
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); IngentaConnect Journals; PubMed Central
subjects Chemistry and Materials Science
Materials Science
Molecular Medicine
Nano Express
Nanochemistry
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
title Analytical modeling of glucose biosensors based on carbon nanotubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A35%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20modeling%20of%20glucose%20biosensors%20based%20on%20carbon%20nanotubes&rft.jtitle=Nanoscale%20research%20letters&rft.au=Pourasl,%20Ali%20H&rft.date=2014-01-15&rft.volume=9&rft.issue=1&rft.spage=33&rft.epage=33&rft.pages=33-33&rft.artnum=33&rft.issn=1931-7573&rft.eissn=1556-276X&rft_id=info:doi/10.1186/1556-276X-9-33&rft_dat=%3Cproquest_pubme%3E3586002841%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-bc499e7e832f4ad908d7bd70cda336ca2175fa310302a3207f105560ed74e1f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1652953882&rft_id=info:pmid/24428818&rfr_iscdi=true