Loading…
ASLForm: an adaptive self learning medical form generating system
To facilitate the process of extracting information from narrative medical reports and transforming extracted data into standardized structured forms, we present an interactive, incrementally learning based information extraction system - ASLForm. ASLForm provides users a convenient interface that c...
Saved in:
Published in: | AMIA ... Annual Symposium proceedings 2013, Vol.2013, p.1590-1599 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1599 |
container_issue | |
container_start_page | 1590 |
container_title | AMIA ... Annual Symposium proceedings |
container_volume | 2013 |
creator | Zheng, Shuai Wang, Fusheng Lu, James J |
description | To facilitate the process of extracting information from narrative medical reports and transforming extracted data into standardized structured forms, we present an interactive, incrementally learning based information extraction system - ASLForm. ASLForm provides users a convenient interface that can be used as a simple data extraction and data entry system. It is unique, however, in its ability to transparently analyze and quickly learn, from users' interactions with a small number of reports, the desired values for the data fields. Additional user feedback (through acceptance decision or edits on the generated values) can incrementally refine the decision model in real-time, which further reduces users' interaction effort thereafter. The system eventually achieves high accuracy on data extraction with minimal effort from users. ASLForm requires no special configuration or training sets, and is not constrained to specific domains, thus it is easy to use and highly portable. Our experiments demonstrate the effectiveness of the system. |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3900168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1500689439</sourcerecordid><originalsourceid>FETCH-LOGICAL-p181t-e1edb21882bcb83fde30ef9b475fecce893752616aecfeb720a291314e8dc8083</originalsourceid><addsrcrecordid>eNpVkEtLAzEUhYMgtlb_gmTpZiCPyUziQijFFxRcqOuQydzUSCYzJtNC_71TrKKrA_ccvnO4J2hOhVBFSepqhs5z_iCkrIWsztCMlULQkqk5Wi5f1vd96m6widi0Zhj9DnCG4HAAk6KPG9xB660J2E05vIEIyYyHe97nEboLdOpMyHB51AV6u797XT0W6-eHp9VyXQxU0rEACm3DqJSssY3krgVOwKlmmuTAWpCK14JVtDJgHTQ1I4YpymkJsrWSSL5At9_cYdtMiyzEMZmgh-Q7k_a6N17_d6J_15t-p7kihFYHwPURkPrPLeRRdz5bCMFE6LdZU0FIJVXJ1RS9-tv1W_LzN_4FlsNqGA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1500689439</pqid></control><display><type>article</type><title>ASLForm: an adaptive self learning medical form generating system</title><source>PubMed Central</source><creator>Zheng, Shuai ; Wang, Fusheng ; Lu, James J</creator><creatorcontrib>Zheng, Shuai ; Wang, Fusheng ; Lu, James J</creatorcontrib><description>To facilitate the process of extracting information from narrative medical reports and transforming extracted data into standardized structured forms, we present an interactive, incrementally learning based information extraction system - ASLForm. ASLForm provides users a convenient interface that can be used as a simple data extraction and data entry system. It is unique, however, in its ability to transparently analyze and quickly learn, from users' interactions with a small number of reports, the desired values for the data fields. Additional user feedback (through acceptance decision or edits on the generated values) can incrementally refine the decision model in real-time, which further reduces users' interaction effort thereafter. The system eventually achieves high accuracy on data extraction with minimal effort from users. ASLForm requires no special configuration or training sets, and is not constrained to specific domains, thus it is easy to use and highly portable. Our experiments demonstrate the effectiveness of the system.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 24551429</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Abstracting and Indexing as Topic ; Artificial Intelligence ; Electronic Health Records ; Information Storage and Retrieval - methods ; Information Systems ; User-Computer Interface</subject><ispartof>AMIA ... Annual Symposium proceedings, 2013, Vol.2013, p.1590-1599</ispartof><rights>2013 AMIA - All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900168/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900168/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24551429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Shuai</creatorcontrib><creatorcontrib>Wang, Fusheng</creatorcontrib><creatorcontrib>Lu, James J</creatorcontrib><title>ASLForm: an adaptive self learning medical form generating system</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>To facilitate the process of extracting information from narrative medical reports and transforming extracted data into standardized structured forms, we present an interactive, incrementally learning based information extraction system - ASLForm. ASLForm provides users a convenient interface that can be used as a simple data extraction and data entry system. It is unique, however, in its ability to transparently analyze and quickly learn, from users' interactions with a small number of reports, the desired values for the data fields. Additional user feedback (through acceptance decision or edits on the generated values) can incrementally refine the decision model in real-time, which further reduces users' interaction effort thereafter. The system eventually achieves high accuracy on data extraction with minimal effort from users. ASLForm requires no special configuration or training sets, and is not constrained to specific domains, thus it is easy to use and highly portable. Our experiments demonstrate the effectiveness of the system.</description><subject>Abstracting and Indexing as Topic</subject><subject>Artificial Intelligence</subject><subject>Electronic Health Records</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information Systems</subject><subject>User-Computer Interface</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkEtLAzEUhYMgtlb_gmTpZiCPyUziQijFFxRcqOuQydzUSCYzJtNC_71TrKKrA_ccvnO4J2hOhVBFSepqhs5z_iCkrIWsztCMlULQkqk5Wi5f1vd96m6widi0Zhj9DnCG4HAAk6KPG9xB660J2E05vIEIyYyHe97nEboLdOpMyHB51AV6u797XT0W6-eHp9VyXQxU0rEACm3DqJSssY3krgVOwKlmmuTAWpCK14JVtDJgHTQ1I4YpymkJsrWSSL5At9_cYdtMiyzEMZmgh-Q7k_a6N17_d6J_15t-p7kihFYHwPURkPrPLeRRdz5bCMFE6LdZU0FIJVXJ1RS9-tv1W_LzN_4FlsNqGA</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Zheng, Shuai</creator><creator>Wang, Fusheng</creator><creator>Lu, James J</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2013</creationdate><title>ASLForm: an adaptive self learning medical form generating system</title><author>Zheng, Shuai ; Wang, Fusheng ; Lu, James J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p181t-e1edb21882bcb83fde30ef9b475fecce893752616aecfeb720a291314e8dc8083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Abstracting and Indexing as Topic</topic><topic>Artificial Intelligence</topic><topic>Electronic Health Records</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information Systems</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Shuai</creatorcontrib><creatorcontrib>Wang, Fusheng</creatorcontrib><creatorcontrib>Lu, James J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Shuai</au><au>Wang, Fusheng</au><au>Lu, James J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ASLForm: an adaptive self learning medical form generating system</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2013</date><risdate>2013</risdate><volume>2013</volume><spage>1590</spage><epage>1599</epage><pages>1590-1599</pages><eissn>1559-4076</eissn><abstract>To facilitate the process of extracting information from narrative medical reports and transforming extracted data into standardized structured forms, we present an interactive, incrementally learning based information extraction system - ASLForm. ASLForm provides users a convenient interface that can be used as a simple data extraction and data entry system. It is unique, however, in its ability to transparently analyze and quickly learn, from users' interactions with a small number of reports, the desired values for the data fields. Additional user feedback (through acceptance decision or edits on the generated values) can incrementally refine the decision model in real-time, which further reduces users' interaction effort thereafter. The system eventually achieves high accuracy on data extraction with minimal effort from users. ASLForm requires no special configuration or training sets, and is not constrained to specific domains, thus it is easy to use and highly portable. Our experiments demonstrate the effectiveness of the system.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>24551429</pmid><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1559-4076 |
ispartof | AMIA ... Annual Symposium proceedings, 2013, Vol.2013, p.1590-1599 |
issn | 1559-4076 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3900168 |
source | PubMed Central |
subjects | Abstracting and Indexing as Topic Artificial Intelligence Electronic Health Records Information Storage and Retrieval - methods Information Systems User-Computer Interface |
title | ASLForm: an adaptive self learning medical form generating system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ASLForm:%20an%20adaptive%20self%20learning%20medical%20form%20generating%20system&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Zheng,%20Shuai&rft.date=2013&rft.volume=2013&rft.spage=1590&rft.epage=1599&rft.pages=1590-1599&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E1500689439%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p181t-e1edb21882bcb83fde30ef9b475fecce893752616aecfeb720a291314e8dc8083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1500689439&rft_id=info:pmid/24551429&rfr_iscdi=true |