Loading…

ASLForm: an adaptive self learning medical form generating system

To facilitate the process of extracting information from narrative medical reports and transforming extracted data into standardized structured forms, we present an interactive, incrementally learning based information extraction system - ASLForm. ASLForm provides users a convenient interface that c...

Full description

Saved in:
Bibliographic Details
Published in:AMIA ... Annual Symposium proceedings 2013, Vol.2013, p.1590-1599
Main Authors: Zheng, Shuai, Wang, Fusheng, Lu, James J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1599
container_issue
container_start_page 1590
container_title AMIA ... Annual Symposium proceedings
container_volume 2013
creator Zheng, Shuai
Wang, Fusheng
Lu, James J
description To facilitate the process of extracting information from narrative medical reports and transforming extracted data into standardized structured forms, we present an interactive, incrementally learning based information extraction system - ASLForm. ASLForm provides users a convenient interface that can be used as a simple data extraction and data entry system. It is unique, however, in its ability to transparently analyze and quickly learn, from users' interactions with a small number of reports, the desired values for the data fields. Additional user feedback (through acceptance decision or edits on the generated values) can incrementally refine the decision model in real-time, which further reduces users' interaction effort thereafter. The system eventually achieves high accuracy on data extraction with minimal effort from users. ASLForm requires no special configuration or training sets, and is not constrained to specific domains, thus it is easy to use and highly portable. Our experiments demonstrate the effectiveness of the system.
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3900168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1500689439</sourcerecordid><originalsourceid>FETCH-LOGICAL-p181t-e1edb21882bcb83fde30ef9b475fecce893752616aecfeb720a291314e8dc8083</originalsourceid><addsrcrecordid>eNpVkEtLAzEUhYMgtlb_gmTpZiCPyUziQijFFxRcqOuQydzUSCYzJtNC_71TrKKrA_ccvnO4J2hOhVBFSepqhs5z_iCkrIWsztCMlULQkqk5Wi5f1vd96m6widi0Zhj9DnCG4HAAk6KPG9xB660J2E05vIEIyYyHe97nEboLdOpMyHB51AV6u797XT0W6-eHp9VyXQxU0rEACm3DqJSssY3krgVOwKlmmuTAWpCK14JVtDJgHTQ1I4YpymkJsrWSSL5At9_cYdtMiyzEMZmgh-Q7k_a6N17_d6J_15t-p7kihFYHwPURkPrPLeRRdz5bCMFE6LdZU0FIJVXJ1RS9-tv1W_LzN_4FlsNqGA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1500689439</pqid></control><display><type>article</type><title>ASLForm: an adaptive self learning medical form generating system</title><source>PubMed Central</source><creator>Zheng, Shuai ; Wang, Fusheng ; Lu, James J</creator><creatorcontrib>Zheng, Shuai ; Wang, Fusheng ; Lu, James J</creatorcontrib><description>To facilitate the process of extracting information from narrative medical reports and transforming extracted data into standardized structured forms, we present an interactive, incrementally learning based information extraction system - ASLForm. ASLForm provides users a convenient interface that can be used as a simple data extraction and data entry system. It is unique, however, in its ability to transparently analyze and quickly learn, from users' interactions with a small number of reports, the desired values for the data fields. Additional user feedback (through acceptance decision or edits on the generated values) can incrementally refine the decision model in real-time, which further reduces users' interaction effort thereafter. The system eventually achieves high accuracy on data extraction with minimal effort from users. ASLForm requires no special configuration or training sets, and is not constrained to specific domains, thus it is easy to use and highly portable. Our experiments demonstrate the effectiveness of the system.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 24551429</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Abstracting and Indexing as Topic ; Artificial Intelligence ; Electronic Health Records ; Information Storage and Retrieval - methods ; Information Systems ; User-Computer Interface</subject><ispartof>AMIA ... Annual Symposium proceedings, 2013, Vol.2013, p.1590-1599</ispartof><rights>2013 AMIA - All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900168/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900168/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24551429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Shuai</creatorcontrib><creatorcontrib>Wang, Fusheng</creatorcontrib><creatorcontrib>Lu, James J</creatorcontrib><title>ASLForm: an adaptive self learning medical form generating system</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>To facilitate the process of extracting information from narrative medical reports and transforming extracted data into standardized structured forms, we present an interactive, incrementally learning based information extraction system - ASLForm. ASLForm provides users a convenient interface that can be used as a simple data extraction and data entry system. It is unique, however, in its ability to transparently analyze and quickly learn, from users' interactions with a small number of reports, the desired values for the data fields. Additional user feedback (through acceptance decision or edits on the generated values) can incrementally refine the decision model in real-time, which further reduces users' interaction effort thereafter. The system eventually achieves high accuracy on data extraction with minimal effort from users. ASLForm requires no special configuration or training sets, and is not constrained to specific domains, thus it is easy to use and highly portable. Our experiments demonstrate the effectiveness of the system.</description><subject>Abstracting and Indexing as Topic</subject><subject>Artificial Intelligence</subject><subject>Electronic Health Records</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information Systems</subject><subject>User-Computer Interface</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkEtLAzEUhYMgtlb_gmTpZiCPyUziQijFFxRcqOuQydzUSCYzJtNC_71TrKKrA_ccvnO4J2hOhVBFSepqhs5z_iCkrIWsztCMlULQkqk5Wi5f1vd96m6widi0Zhj9DnCG4HAAk6KPG9xB660J2E05vIEIyYyHe97nEboLdOpMyHB51AV6u797XT0W6-eHp9VyXQxU0rEACm3DqJSssY3krgVOwKlmmuTAWpCK14JVtDJgHTQ1I4YpymkJsrWSSL5At9_cYdtMiyzEMZmgh-Q7k_a6N17_d6J_15t-p7kihFYHwPURkPrPLeRRdz5bCMFE6LdZU0FIJVXJ1RS9-tv1W_LzN_4FlsNqGA</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Zheng, Shuai</creator><creator>Wang, Fusheng</creator><creator>Lu, James J</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2013</creationdate><title>ASLForm: an adaptive self learning medical form generating system</title><author>Zheng, Shuai ; Wang, Fusheng ; Lu, James J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p181t-e1edb21882bcb83fde30ef9b475fecce893752616aecfeb720a291314e8dc8083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Abstracting and Indexing as Topic</topic><topic>Artificial Intelligence</topic><topic>Electronic Health Records</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information Systems</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Shuai</creatorcontrib><creatorcontrib>Wang, Fusheng</creatorcontrib><creatorcontrib>Lu, James J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Shuai</au><au>Wang, Fusheng</au><au>Lu, James J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ASLForm: an adaptive self learning medical form generating system</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2013</date><risdate>2013</risdate><volume>2013</volume><spage>1590</spage><epage>1599</epage><pages>1590-1599</pages><eissn>1559-4076</eissn><abstract>To facilitate the process of extracting information from narrative medical reports and transforming extracted data into standardized structured forms, we present an interactive, incrementally learning based information extraction system - ASLForm. ASLForm provides users a convenient interface that can be used as a simple data extraction and data entry system. It is unique, however, in its ability to transparently analyze and quickly learn, from users' interactions with a small number of reports, the desired values for the data fields. Additional user feedback (through acceptance decision or edits on the generated values) can incrementally refine the decision model in real-time, which further reduces users' interaction effort thereafter. The system eventually achieves high accuracy on data extraction with minimal effort from users. ASLForm requires no special configuration or training sets, and is not constrained to specific domains, thus it is easy to use and highly portable. Our experiments demonstrate the effectiveness of the system.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>24551429</pmid><tpages>10</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1559-4076
ispartof AMIA ... Annual Symposium proceedings, 2013, Vol.2013, p.1590-1599
issn 1559-4076
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3900168
source PubMed Central
subjects Abstracting and Indexing as Topic
Artificial Intelligence
Electronic Health Records
Information Storage and Retrieval - methods
Information Systems
User-Computer Interface
title ASLForm: an adaptive self learning medical form generating system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ASLForm:%20an%20adaptive%20self%20learning%20medical%20form%20generating%20system&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Zheng,%20Shuai&rft.date=2013&rft.volume=2013&rft.spage=1590&rft.epage=1599&rft.pages=1590-1599&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E1500689439%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p181t-e1edb21882bcb83fde30ef9b475fecce893752616aecfeb720a291314e8dc8083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1500689439&rft_id=info:pmid/24551429&rfr_iscdi=true