Loading…

The use of gadolinium-carbon nanostructures to magnetically enhance stem cell retention for cellular cardiomyoplasty

Abstract In this work, the effectiveness of using Gadonanotubes (GNTs) with an external magnetic field to improve retention of transplanted adult mesenchymal stem cells (MSCs) during cellular cardiomyoplasty was evaluated. As a high-performance T1 -weighted magnetic resonance imaging (MRI) cell trac...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2014-01, Vol.35 (2), p.720-726
Main Authors: Tran, Lesa A, Hernández-Rivera, Mayra, Berlin, Ari N, Zheng, Yi, Sampaio, Luiz, Bové, Christina, Cabreira-Hansen, Maria da Graça, Willerson, James T, Perin, Emerson C, Wilson, Lon J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c542t-2ac57b5d82bc2d0d039197170cb6ea553f732a9abf45bb59bb0cbcfae09062d13
cites cdi_FETCH-LOGICAL-c542t-2ac57b5d82bc2d0d039197170cb6ea553f732a9abf45bb59bb0cbcfae09062d13
container_end_page 726
container_issue 2
container_start_page 720
container_title Biomaterials
container_volume 35
creator Tran, Lesa A
Hernández-Rivera, Mayra
Berlin, Ari N
Zheng, Yi
Sampaio, Luiz
Bové, Christina
Cabreira-Hansen, Maria da Graça
Willerson, James T
Perin, Emerson C
Wilson, Lon J
description Abstract In this work, the effectiveness of using Gadonanotubes (GNTs) with an external magnetic field to improve retention of transplanted adult mesenchymal stem cells (MSCs) during cellular cardiomyoplasty was evaluated. As a high-performance T1 -weighted magnetic resonance imaging (MRI) cell tracking label, the GNTs are gadolinium-loaded carbon nanotube capsules that render MSCs magnetic when internalized. MSCs were internally labeled with either superparamagnetic GNTs or colloidal diamagnetic lutetium (Lu). In vitro cell rolling assays and ex vivo cardiac perfusion experiments qualitatively demonstrated increased magnetic-assisted retention of GNT-labeled MSCs. Subsequent in vivo epicardial cell injections were performed around a 1.3 T NdFeB ring magnet sutured onto the left ventricle of female juvenile pigs ( n  = 21). Cell dosage, magnet exposure time, and endpoints were varied to evaluate the safety and efficacy of the proposed therapy. Quantification of retained cells in collected tissues by elemental analysis (Gd or Lu) showed that the external magnet helped retain nearly three times more GNT-labeled MSCs than Lu-labeled cells. The sutured magnet was tolerated for up to 168 h; however, an inflammatory response to the magnet was noted after 48 h. These proof-of-concept studies support the feasibility and value of using GNTs as a magnetic nanoparticle facilitator to improve cell retention during cellular cardiomyoplasty.
doi_str_mv 10.1016/j.biomaterials.2013.10.013
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3900574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961213012246</els_id><sourcerecordid>24148239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-2ac57b5d82bc2d0d039197170cb6ea553f732a9abf45bb59bb0cbcfae09062d13</originalsourceid><addsrcrecordid>eNqNUk1v1DAQtRCILoW_gCzuWWwnTtYcKqGWL6kSB8rZGjuTXS-JvbKdSvn3OCxUhROnsefNezOaN4S84WzLGW_fHrfGhQkyRgdj2grG6wJsS3hCNnzX7SqpmHxKNow3olItFxfkRUpHVv6sEc_JhWh4sxO12pB8d0A6J6RhoHvow-i8m6fKQjTBUw8-pBxnm-eIieZAJ9h7zM7COC4U_QG8RZoyTtTiONKIGX12hTqE-Cs1j1AeEPsy8hJOI6S8vCTPhjI5vvodL8n3jx_urj9Xt18_fbl-f1tZ2YhcCbCyM7LfCWNFz3pWK6463jFrWgQp66GrBSgwQyONkcqYgtgBkCnWip7Xl-TqrHuazYS9LaNFGPUpugniogM4_Tfi3UHvw72uFWOya4rAu7OAjSGliMMDlzO9eqGP-rEXevVixUoo5NePuz9Q_yy_FNycC7Ds4N5h1Mk6LAvtXUSbdR_c__W5-kfGri4Wi37ggukY5uhXDtdJaKa_rVexHgWvGReiaeufONO8Ng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The use of gadolinium-carbon nanostructures to magnetically enhance stem cell retention for cellular cardiomyoplasty</title><source>Elsevier</source><creator>Tran, Lesa A ; Hernández-Rivera, Mayra ; Berlin, Ari N ; Zheng, Yi ; Sampaio, Luiz ; Bové, Christina ; Cabreira-Hansen, Maria da Graça ; Willerson, James T ; Perin, Emerson C ; Wilson, Lon J</creator><creatorcontrib>Tran, Lesa A ; Hernández-Rivera, Mayra ; Berlin, Ari N ; Zheng, Yi ; Sampaio, Luiz ; Bové, Christina ; Cabreira-Hansen, Maria da Graça ; Willerson, James T ; Perin, Emerson C ; Wilson, Lon J</creatorcontrib><description>Abstract In this work, the effectiveness of using Gadonanotubes (GNTs) with an external magnetic field to improve retention of transplanted adult mesenchymal stem cells (MSCs) during cellular cardiomyoplasty was evaluated. As a high-performance T1 -weighted magnetic resonance imaging (MRI) cell tracking label, the GNTs are gadolinium-loaded carbon nanotube capsules that render MSCs magnetic when internalized. MSCs were internally labeled with either superparamagnetic GNTs or colloidal diamagnetic lutetium (Lu). In vitro cell rolling assays and ex vivo cardiac perfusion experiments qualitatively demonstrated increased magnetic-assisted retention of GNT-labeled MSCs. Subsequent in vivo epicardial cell injections were performed around a 1.3 T NdFeB ring magnet sutured onto the left ventricle of female juvenile pigs ( n  = 21). Cell dosage, magnet exposure time, and endpoints were varied to evaluate the safety and efficacy of the proposed therapy. Quantification of retained cells in collected tissues by elemental analysis (Gd or Lu) showed that the external magnet helped retain nearly three times more GNT-labeled MSCs than Lu-labeled cells. The sutured magnet was tolerated for up to 168 h; however, an inflammatory response to the magnet was noted after 48 h. These proof-of-concept studies support the feasibility and value of using GNTs as a magnetic nanoparticle facilitator to improve cell retention during cellular cardiomyoplasty.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2013.10.013</identifier><identifier>PMID: 24148239</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; Cardiomyoplasty - methods ; Cell Tracking ; Cells, Cultured ; Cellular cardiomyoplasty ; Contrast Media - chemistry ; Dentistry ; Endpoint Determination ; Female ; Gadolinium - chemistry ; Gadonanotube ; Magnetic Resonance Imaging ; Magnetics ; Male ; Mesenchymal stem cell ; Mesenchymal Stromal Cells - cytology ; Nanotechnology ; Nanotubes, Carbon - chemistry ; Single-walled carbon nanotube ; Swine</subject><ispartof>Biomaterials, 2014-01, Vol.35 (2), p.720-726</ispartof><rights>Elsevier Ltd</rights><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><rights>2013 Elsevier Ltd. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-2ac57b5d82bc2d0d039197170cb6ea553f732a9abf45bb59bb0cbcfae09062d13</citedby><cites>FETCH-LOGICAL-c542t-2ac57b5d82bc2d0d039197170cb6ea553f732a9abf45bb59bb0cbcfae09062d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24148239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tran, Lesa A</creatorcontrib><creatorcontrib>Hernández-Rivera, Mayra</creatorcontrib><creatorcontrib>Berlin, Ari N</creatorcontrib><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Sampaio, Luiz</creatorcontrib><creatorcontrib>Bové, Christina</creatorcontrib><creatorcontrib>Cabreira-Hansen, Maria da Graça</creatorcontrib><creatorcontrib>Willerson, James T</creatorcontrib><creatorcontrib>Perin, Emerson C</creatorcontrib><creatorcontrib>Wilson, Lon J</creatorcontrib><title>The use of gadolinium-carbon nanostructures to magnetically enhance stem cell retention for cellular cardiomyoplasty</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract In this work, the effectiveness of using Gadonanotubes (GNTs) with an external magnetic field to improve retention of transplanted adult mesenchymal stem cells (MSCs) during cellular cardiomyoplasty was evaluated. As a high-performance T1 -weighted magnetic resonance imaging (MRI) cell tracking label, the GNTs are gadolinium-loaded carbon nanotube capsules that render MSCs magnetic when internalized. MSCs were internally labeled with either superparamagnetic GNTs or colloidal diamagnetic lutetium (Lu). In vitro cell rolling assays and ex vivo cardiac perfusion experiments qualitatively demonstrated increased magnetic-assisted retention of GNT-labeled MSCs. Subsequent in vivo epicardial cell injections were performed around a 1.3 T NdFeB ring magnet sutured onto the left ventricle of female juvenile pigs ( n  = 21). Cell dosage, magnet exposure time, and endpoints were varied to evaluate the safety and efficacy of the proposed therapy. Quantification of retained cells in collected tissues by elemental analysis (Gd or Lu) showed that the external magnet helped retain nearly three times more GNT-labeled MSCs than Lu-labeled cells. The sutured magnet was tolerated for up to 168 h; however, an inflammatory response to the magnet was noted after 48 h. These proof-of-concept studies support the feasibility and value of using GNTs as a magnetic nanoparticle facilitator to improve cell retention during cellular cardiomyoplasty.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Cardiomyoplasty - methods</subject><subject>Cell Tracking</subject><subject>Cells, Cultured</subject><subject>Cellular cardiomyoplasty</subject><subject>Contrast Media - chemistry</subject><subject>Dentistry</subject><subject>Endpoint Determination</subject><subject>Female</subject><subject>Gadolinium - chemistry</subject><subject>Gadonanotube</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetics</subject><subject>Male</subject><subject>Mesenchymal stem cell</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Nanotechnology</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Single-walled carbon nanotube</subject><subject>Swine</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNUk1v1DAQtRCILoW_gCzuWWwnTtYcKqGWL6kSB8rZGjuTXS-JvbKdSvn3OCxUhROnsefNezOaN4S84WzLGW_fHrfGhQkyRgdj2grG6wJsS3hCNnzX7SqpmHxKNow3olItFxfkRUpHVv6sEc_JhWh4sxO12pB8d0A6J6RhoHvow-i8m6fKQjTBUw8-pBxnm-eIieZAJ9h7zM7COC4U_QG8RZoyTtTiONKIGX12hTqE-Cs1j1AeEPsy8hJOI6S8vCTPhjI5vvodL8n3jx_urj9Xt18_fbl-f1tZ2YhcCbCyM7LfCWNFz3pWK6463jFrWgQp66GrBSgwQyONkcqYgtgBkCnWip7Xl-TqrHuazYS9LaNFGPUpugniogM4_Tfi3UHvw72uFWOya4rAu7OAjSGliMMDlzO9eqGP-rEXevVixUoo5NePuz9Q_yy_FNycC7Ds4N5h1Mk6LAvtXUSbdR_c__W5-kfGri4Wi37ggukY5uhXDtdJaKa_rVexHgWvGReiaeufONO8Ng</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Tran, Lesa A</creator><creator>Hernández-Rivera, Mayra</creator><creator>Berlin, Ari N</creator><creator>Zheng, Yi</creator><creator>Sampaio, Luiz</creator><creator>Bové, Christina</creator><creator>Cabreira-Hansen, Maria da Graça</creator><creator>Willerson, James T</creator><creator>Perin, Emerson C</creator><creator>Wilson, Lon J</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>The use of gadolinium-carbon nanostructures to magnetically enhance stem cell retention for cellular cardiomyoplasty</title><author>Tran, Lesa A ; Hernández-Rivera, Mayra ; Berlin, Ari N ; Zheng, Yi ; Sampaio, Luiz ; Bové, Christina ; Cabreira-Hansen, Maria da Graça ; Willerson, James T ; Perin, Emerson C ; Wilson, Lon J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-2ac57b5d82bc2d0d039197170cb6ea553f732a9abf45bb59bb0cbcfae09062d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Cardiomyoplasty - methods</topic><topic>Cell Tracking</topic><topic>Cells, Cultured</topic><topic>Cellular cardiomyoplasty</topic><topic>Contrast Media - chemistry</topic><topic>Dentistry</topic><topic>Endpoint Determination</topic><topic>Female</topic><topic>Gadolinium - chemistry</topic><topic>Gadonanotube</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetics</topic><topic>Male</topic><topic>Mesenchymal stem cell</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Nanotechnology</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Single-walled carbon nanotube</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Lesa A</creatorcontrib><creatorcontrib>Hernández-Rivera, Mayra</creatorcontrib><creatorcontrib>Berlin, Ari N</creatorcontrib><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Sampaio, Luiz</creatorcontrib><creatorcontrib>Bové, Christina</creatorcontrib><creatorcontrib>Cabreira-Hansen, Maria da Graça</creatorcontrib><creatorcontrib>Willerson, James T</creatorcontrib><creatorcontrib>Perin, Emerson C</creatorcontrib><creatorcontrib>Wilson, Lon J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Lesa A</au><au>Hernández-Rivera, Mayra</au><au>Berlin, Ari N</au><au>Zheng, Yi</au><au>Sampaio, Luiz</au><au>Bové, Christina</au><au>Cabreira-Hansen, Maria da Graça</au><au>Willerson, James T</au><au>Perin, Emerson C</au><au>Wilson, Lon J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The use of gadolinium-carbon nanostructures to magnetically enhance stem cell retention for cellular cardiomyoplasty</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>35</volume><issue>2</issue><spage>720</spage><epage>726</epage><pages>720-726</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract In this work, the effectiveness of using Gadonanotubes (GNTs) with an external magnetic field to improve retention of transplanted adult mesenchymal stem cells (MSCs) during cellular cardiomyoplasty was evaluated. As a high-performance T1 -weighted magnetic resonance imaging (MRI) cell tracking label, the GNTs are gadolinium-loaded carbon nanotube capsules that render MSCs magnetic when internalized. MSCs were internally labeled with either superparamagnetic GNTs or colloidal diamagnetic lutetium (Lu). In vitro cell rolling assays and ex vivo cardiac perfusion experiments qualitatively demonstrated increased magnetic-assisted retention of GNT-labeled MSCs. Subsequent in vivo epicardial cell injections were performed around a 1.3 T NdFeB ring magnet sutured onto the left ventricle of female juvenile pigs ( n  = 21). Cell dosage, magnet exposure time, and endpoints were varied to evaluate the safety and efficacy of the proposed therapy. Quantification of retained cells in collected tissues by elemental analysis (Gd or Lu) showed that the external magnet helped retain nearly three times more GNT-labeled MSCs than Lu-labeled cells. The sutured magnet was tolerated for up to 168 h; however, an inflammatory response to the magnet was noted after 48 h. These proof-of-concept studies support the feasibility and value of using GNTs as a magnetic nanoparticle facilitator to improve cell retention during cellular cardiomyoplasty.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>24148239</pmid><doi>10.1016/j.biomaterials.2013.10.013</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2014-01, Vol.35 (2), p.720-726
issn 0142-9612
1878-5905
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3900574
source Elsevier
subjects Advanced Basic Science
Animals
Cardiomyoplasty - methods
Cell Tracking
Cells, Cultured
Cellular cardiomyoplasty
Contrast Media - chemistry
Dentistry
Endpoint Determination
Female
Gadolinium - chemistry
Gadonanotube
Magnetic Resonance Imaging
Magnetics
Male
Mesenchymal stem cell
Mesenchymal Stromal Cells - cytology
Nanotechnology
Nanotubes, Carbon - chemistry
Single-walled carbon nanotube
Swine
title The use of gadolinium-carbon nanostructures to magnetically enhance stem cell retention for cellular cardiomyoplasty
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A44%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20use%20of%20gadolinium-carbon%20nanostructures%20to%20magnetically%20enhance%20stem%20cell%20retention%20for%20cellular%20cardiomyoplasty&rft.jtitle=Biomaterials&rft.au=Tran,%20Lesa%20A&rft.date=2014-01-01&rft.volume=35&rft.issue=2&rft.spage=720&rft.epage=726&rft.pages=720-726&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2013.10.013&rft_dat=%3Cpubmed_cross%3E24148239%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c542t-2ac57b5d82bc2d0d039197170cb6ea553f732a9abf45bb59bb0cbcfae09062d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/24148239&rfr_iscdi=true