Loading…

Structural and functional analysis of Mre11‐3

The Mre11, Rad50 and Nbs1 proteins make up the conserved multi‐functional Mre11 (MRN) complex involved in multiple, critical DNA metabolic processes including double‐strand break repair and telomere maintenance. The Mre11 protein is a nuclease with broad substrate recognition, but MRN‐dependent proc...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2004, Vol.32 (6), p.1886-1893
Main Authors: Arthur, L. Matthew, Gustausson, Karin, Hopfner, Karl‐Peter, Carson, Christian T., Stracker, Travis H., Karcher, Annette, Felton, Diana, Weitzman, Matthew D., Tainer, John, Carney, James P.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c566t-ab9cdd027293b6ec233622298f5c0065ed76ef11598885c93bb98784654768403
cites
container_end_page 1893
container_issue 6
container_start_page 1886
container_title Nucleic acids research
container_volume 32
creator Arthur, L. Matthew
Gustausson, Karin
Hopfner, Karl‐Peter
Carson, Christian T.
Stracker, Travis H.
Karcher, Annette
Felton, Diana
Weitzman, Matthew D.
Tainer, John
Carney, James P.
description The Mre11, Rad50 and Nbs1 proteins make up the conserved multi‐functional Mre11 (MRN) complex involved in multiple, critical DNA metabolic processes including double‐strand break repair and telomere maintenance. The Mre11 protein is a nuclease with broad substrate recognition, but MRN‐dependent processes requiring the nuclease activity are not clearly defined. Here, we report the functional and structural characterization of a nuclease‐deficient Mre11 protein termed mre11‐3. Importantly, the hmre11‐3 protein has wild‐type ability to bind DNA, Rad50 and Nbs1; however, nuclease activity was completely abrogated. When expressed in cell lines from patients with ataxia telangiectasia‐like disorder (ATLD), hmre11‐3 restored the formation of ionizing radiation‐induced foci. Consistent with the biochemical results, the 2.3 Å crystal structure of mre11‐3 from Pyrococcus furiosus revealed an active site structure with a wild‐type‐like metal‐binding environment. The structural analysis of the H85L mutation provides a detailed molecular basis for the ability of mre11‐3 to bind but not hydrolyze DNA. Together, these results establish that the mre11‐3 protein provides an excellent system for dissecting nuclease‐dependent and independent functions of the Mre11 complex.
doi_str_mv 10.1093/nar/gkh343
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_390353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71783011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-ab9cdd027293b6ec233622298f5c0065ed76ef11598885c93bb98784654768403</originalsourceid><addsrcrecordid>eNqF0blOAzEQBmALgSAEGh4ARRQUSEt8HwUFRNyXuCREYzleLyzZ7IK9i0jHI_CMPAmGRFwNlWXNN5ZnfgCWEFxHUJFuaXz3dnBHKJkCLUQ4TqjieBq0IIEsQZDKOTAfwj2EiCJGZ8EcYpAKyVgLdC9q39i68abomDLtZE1p67wqP6-mGIU8dKqsc-wdQm8vr2QBzGSmCG5xcrbB1c72ZW8vOTrd3e9tHiWWcV4npq9smkIssCJ97iwm8VsYK5kxCyFnLhXcZQgxJaVkNqK-kkJSzqjgkkLSBhvjdx-a_tCl1pV1_KJ-8PnQ-JGuTK5_V8r8Tt9WT5ooSBiJ_auTfl89Ni7UepgH64rClK5qghZISAIR-hcixbmSiv4PhRIcUx7hyh94XzU-LjNoHGePcRAV0doYWV-F4F32NRqC-iNVHVPV41QjXv65jG86iTGCZAzyULvnr7rxA80FEUzvXd_og_Pe1vHZyaHG5B2vtqwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200604839</pqid></control><display><type>article</type><title>Structural and functional analysis of Mre11‐3</title><source>Access via Oxford University Press (Open Access Collection)</source><source>PubMed Central</source><creator>Arthur, L. Matthew ; Gustausson, Karin ; Hopfner, Karl‐Peter ; Carson, Christian T. ; Stracker, Travis H. ; Karcher, Annette ; Felton, Diana ; Weitzman, Matthew D. ; Tainer, John ; Carney, James P.</creator><creatorcontrib>Arthur, L. Matthew ; Gustausson, Karin ; Hopfner, Karl‐Peter ; Carson, Christian T. ; Stracker, Travis H. ; Karcher, Annette ; Felton, Diana ; Weitzman, Matthew D. ; Tainer, John ; Carney, James P.</creatorcontrib><description>The Mre11, Rad50 and Nbs1 proteins make up the conserved multi‐functional Mre11 (MRN) complex involved in multiple, critical DNA metabolic processes including double‐strand break repair and telomere maintenance. The Mre11 protein is a nuclease with broad substrate recognition, but MRN‐dependent processes requiring the nuclease activity are not clearly defined. Here, we report the functional and structural characterization of a nuclease‐deficient Mre11 protein termed mre11‐3. Importantly, the hmre11‐3 protein has wild‐type ability to bind DNA, Rad50 and Nbs1; however, nuclease activity was completely abrogated. When expressed in cell lines from patients with ataxia telangiectasia‐like disorder (ATLD), hmre11‐3 restored the formation of ionizing radiation‐induced foci. Consistent with the biochemical results, the 2.3 Å crystal structure of mre11‐3 from Pyrococcus furiosus revealed an active site structure with a wild‐type‐like metal‐binding environment. The structural analysis of the H85L mutation provides a detailed molecular basis for the ability of mre11‐3 to bind but not hydrolyze DNA. Together, these results establish that the mre11‐3 protein provides an excellent system for dissecting nuclease‐dependent and independent functions of the Mre11 complex.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkh343</identifier><identifier>PMID: 15047855</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Acid Anhydride Hydrolases ; Cell Cycle Proteins - metabolism ; Cell Line ; DNA - metabolism ; DNA Repair Enzymes - metabolism ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Exonucleases - metabolism ; Humans ; Models, Molecular ; MRE11 Homologue Protein ; Mutation ; Nuclear Proteins - metabolism</subject><ispartof>Nucleic acids research, 2004, Vol.32 (6), p.1886-1893</ispartof><rights>Copyright Oxford University Press(England) Mar 15, 2004</rights><rights>Copyright © 2004 Oxford University Press 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-ab9cdd027293b6ec233622298f5c0065ed76ef11598885c93bb98784654768403</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC390353/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC390353/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15047855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arthur, L. Matthew</creatorcontrib><creatorcontrib>Gustausson, Karin</creatorcontrib><creatorcontrib>Hopfner, Karl‐Peter</creatorcontrib><creatorcontrib>Carson, Christian T.</creatorcontrib><creatorcontrib>Stracker, Travis H.</creatorcontrib><creatorcontrib>Karcher, Annette</creatorcontrib><creatorcontrib>Felton, Diana</creatorcontrib><creatorcontrib>Weitzman, Matthew D.</creatorcontrib><creatorcontrib>Tainer, John</creatorcontrib><creatorcontrib>Carney, James P.</creatorcontrib><title>Structural and functional analysis of Mre11‐3</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>The Mre11, Rad50 and Nbs1 proteins make up the conserved multi‐functional Mre11 (MRN) complex involved in multiple, critical DNA metabolic processes including double‐strand break repair and telomere maintenance. The Mre11 protein is a nuclease with broad substrate recognition, but MRN‐dependent processes requiring the nuclease activity are not clearly defined. Here, we report the functional and structural characterization of a nuclease‐deficient Mre11 protein termed mre11‐3. Importantly, the hmre11‐3 protein has wild‐type ability to bind DNA, Rad50 and Nbs1; however, nuclease activity was completely abrogated. When expressed in cell lines from patients with ataxia telangiectasia‐like disorder (ATLD), hmre11‐3 restored the formation of ionizing radiation‐induced foci. Consistent with the biochemical results, the 2.3 Å crystal structure of mre11‐3 from Pyrococcus furiosus revealed an active site structure with a wild‐type‐like metal‐binding environment. The structural analysis of the H85L mutation provides a detailed molecular basis for the ability of mre11‐3 to bind but not hydrolyze DNA. Together, these results establish that the mre11‐3 protein provides an excellent system for dissecting nuclease‐dependent and independent functions of the Mre11 complex.</description><subject>Acid Anhydride Hydrolases</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Line</subject><subject>DNA - metabolism</subject><subject>DNA Repair Enzymes - metabolism</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Exonucleases - metabolism</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>MRE11 Homologue Protein</subject><subject>Mutation</subject><subject>Nuclear Proteins - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqF0blOAzEQBmALgSAEGh4ARRQUSEt8HwUFRNyXuCREYzleLyzZ7IK9i0jHI_CMPAmGRFwNlWXNN5ZnfgCWEFxHUJFuaXz3dnBHKJkCLUQ4TqjieBq0IIEsQZDKOTAfwj2EiCJGZ8EcYpAKyVgLdC9q39i68abomDLtZE1p67wqP6-mGIU8dKqsc-wdQm8vr2QBzGSmCG5xcrbB1c72ZW8vOTrd3e9tHiWWcV4npq9smkIssCJ97iwm8VsYK5kxCyFnLhXcZQgxJaVkNqK-kkJSzqjgkkLSBhvjdx-a_tCl1pV1_KJ-8PnQ-JGuTK5_V8r8Tt9WT5ooSBiJ_auTfl89Ni7UepgH64rClK5qghZISAIR-hcixbmSiv4PhRIcUx7hyh94XzU-LjNoHGePcRAV0doYWV-F4F32NRqC-iNVHVPV41QjXv65jG86iTGCZAzyULvnr7rxA80FEUzvXd_og_Pe1vHZyaHG5B2vtqwQ</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Arthur, L. Matthew</creator><creator>Gustausson, Karin</creator><creator>Hopfner, Karl‐Peter</creator><creator>Carson, Christian T.</creator><creator>Stracker, Travis H.</creator><creator>Karcher, Annette</creator><creator>Felton, Diana</creator><creator>Weitzman, Matthew D.</creator><creator>Tainer, John</creator><creator>Carney, James P.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2004</creationdate><title>Structural and functional analysis of Mre11‐3</title><author>Arthur, L. Matthew ; Gustausson, Karin ; Hopfner, Karl‐Peter ; Carson, Christian T. ; Stracker, Travis H. ; Karcher, Annette ; Felton, Diana ; Weitzman, Matthew D. ; Tainer, John ; Carney, James P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-ab9cdd027293b6ec233622298f5c0065ed76ef11598885c93bb98784654768403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acid Anhydride Hydrolases</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Line</topic><topic>DNA - metabolism</topic><topic>DNA Repair Enzymes - metabolism</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Exonucleases - metabolism</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>MRE11 Homologue Protein</topic><topic>Mutation</topic><topic>Nuclear Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arthur, L. Matthew</creatorcontrib><creatorcontrib>Gustausson, Karin</creatorcontrib><creatorcontrib>Hopfner, Karl‐Peter</creatorcontrib><creatorcontrib>Carson, Christian T.</creatorcontrib><creatorcontrib>Stracker, Travis H.</creatorcontrib><creatorcontrib>Karcher, Annette</creatorcontrib><creatorcontrib>Felton, Diana</creatorcontrib><creatorcontrib>Weitzman, Matthew D.</creatorcontrib><creatorcontrib>Tainer, John</creatorcontrib><creatorcontrib>Carney, James P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arthur, L. Matthew</au><au>Gustausson, Karin</au><au>Hopfner, Karl‐Peter</au><au>Carson, Christian T.</au><au>Stracker, Travis H.</au><au>Karcher, Annette</au><au>Felton, Diana</au><au>Weitzman, Matthew D.</au><au>Tainer, John</au><au>Carney, James P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and functional analysis of Mre11‐3</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2004</date><risdate>2004</risdate><volume>32</volume><issue>6</issue><spage>1886</spage><epage>1893</epage><pages>1886-1893</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>The Mre11, Rad50 and Nbs1 proteins make up the conserved multi‐functional Mre11 (MRN) complex involved in multiple, critical DNA metabolic processes including double‐strand break repair and telomere maintenance. The Mre11 protein is a nuclease with broad substrate recognition, but MRN‐dependent processes requiring the nuclease activity are not clearly defined. Here, we report the functional and structural characterization of a nuclease‐deficient Mre11 protein termed mre11‐3. Importantly, the hmre11‐3 protein has wild‐type ability to bind DNA, Rad50 and Nbs1; however, nuclease activity was completely abrogated. When expressed in cell lines from patients with ataxia telangiectasia‐like disorder (ATLD), hmre11‐3 restored the formation of ionizing radiation‐induced foci. Consistent with the biochemical results, the 2.3 Å crystal structure of mre11‐3 from Pyrococcus furiosus revealed an active site structure with a wild‐type‐like metal‐binding environment. The structural analysis of the H85L mutation provides a detailed molecular basis for the ability of mre11‐3 to bind but not hydrolyze DNA. Together, these results establish that the mre11‐3 protein provides an excellent system for dissecting nuclease‐dependent and independent functions of the Mre11 complex.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>15047855</pmid><doi>10.1093/nar/gkh343</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2004, Vol.32 (6), p.1886-1893
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_390353
source Access via Oxford University Press (Open Access Collection); PubMed Central
subjects Acid Anhydride Hydrolases
Cell Cycle Proteins - metabolism
Cell Line
DNA - metabolism
DNA Repair Enzymes - metabolism
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Exonucleases - metabolism
Humans
Models, Molecular
MRE11 Homologue Protein
Mutation
Nuclear Proteins - metabolism
title Structural and functional analysis of Mre11‐3
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20functional%20analysis%20of%20Mre11%E2%80%903&rft.jtitle=Nucleic%20acids%20research&rft.au=Arthur,%20L.%20Matthew&rft.date=2004&rft.volume=32&rft.issue=6&rft.spage=1886&rft.epage=1893&rft.pages=1886-1893&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkh343&rft_dat=%3Cproquest_pubme%3E71783011%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c566t-ab9cdd027293b6ec233622298f5c0065ed76ef11598885c93bb98784654768403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200604839&rft_id=info:pmid/15047855&rfr_iscdi=true