Loading…

Ultra-pure single wall carbon nanotube fibres continuously spun without promoter

We report a new strategy towards the control of carbon nanotube (CNT) structure and continuous fibre formation using a floating catalyst direct spinning CVD process. In the procedures used to date, a sulphur promoter precursor is added to significantly enhance the rate of CNT formation in the floati...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2014-02, Vol.4 (1), p.3903-3903, Article 3903
Main Authors: Paukner, Catharina, Koziol, Krzysztof K. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report a new strategy towards the control of carbon nanotube (CNT) structure and continuous fibre formation using a floating catalyst direct spinning CVD process. In the procedures used to date, a sulphur promoter precursor is added to significantly enhance the rate of CNT formation in the floating catalyst synthesis. Within the reaction zone, the rapidly grown nanotubes self-assemble into bundles, followed by their continuous spinning into fibres, yarns, films or tapes. In this paper we demonstrate a catalyst control strategy in the floating catalyst system, where the CNT formation process is independent of the presence of a promoter but leads to successful spinning of the macroscopic carbon nanotube assemblies with specific morphology, high purity (Raman D/G 0.03) and very narrow diameter range (0.8–2.5 nm). This can be achieved by the control of catalyst precursor decomposition and subsequent formation of homogeneous nano-sized catalyst particles.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep03903