Loading…

The identification of mitochondrial DNA variants in glioblastoma multiforme

Mitochondrial DNA (mtDNA) encodes key proteins of the electron transfer chain (ETC), which produces ATP through oxidative phosphorylation (OXPHOS) and is essential for cells to perform specialised functions. Tumor-initiating cells use aerobic glycolysis, a combination of glycolysis and low levels of...

Full description

Saved in:
Bibliographic Details
Published in:Acta neuropathologica communications 2014-01, Vol.2 (1), p.1-1, Article 1
Main Authors: Yeung, Ka Yu, Dickinson, Adam, Donoghue, Jacqueline F, Polekhina, Galina, White, Stefan J, Grammatopoulos, Dimitris K, McKenzie, Matthew, Johns, Terrance G, St John, Justin C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c551t-5945b40bc34686107b859307094a8c593d04a2ebedd269e2446b92b5c5c7a6683
cites cdi_FETCH-LOGICAL-c551t-5945b40bc34686107b859307094a8c593d04a2ebedd269e2446b92b5c5c7a6683
container_end_page 1
container_issue 1
container_start_page 1
container_title Acta neuropathologica communications
container_volume 2
creator Yeung, Ka Yu
Dickinson, Adam
Donoghue, Jacqueline F
Polekhina, Galina
White, Stefan J
Grammatopoulos, Dimitris K
McKenzie, Matthew
Johns, Terrance G
St John, Justin C
description Mitochondrial DNA (mtDNA) encodes key proteins of the electron transfer chain (ETC), which produces ATP through oxidative phosphorylation (OXPHOS) and is essential for cells to perform specialised functions. Tumor-initiating cells use aerobic glycolysis, a combination of glycolysis and low levels of OXPHOS, to promote rapid cell proliferation and tumor growth. Glioblastoma multiforme (GBM) is an aggressively malignant brain tumor and mitochondria have been proposed to play a vital role in GBM tumorigenesis. Using next generation sequencing and high resolution melt analysis, we identified a large number of mtDNA variants within coding and non-coding regions of GBM cell lines and predicted their disease-causing potential through in silico modeling. The frequency of variants was greatest in the D-loop and origin of light strand replication in non-coding regions. ND6 was the most susceptible coding gene to mutation whilst ND4 had the highest frequency of mutation. Both genes encode subunits of complex I of the ETC. These variants were not detected in unaffected brain samples and many have not been previously reported. Depletion of HSR-GBM1 cells to varying degrees of their mtDNA followed by transplantation into immunedeficient mice resulted in the repopulation of the same variants during tumorigenesis. Likewise, de novo variants identified in other GBM cell lines were also incorporated. Nevertheless, ND4 and ND6 were still the most affected genes. We confirmed the presence of these variants in high grade gliomas. These novel variants contribute to GBM by rendering the ETC. partially dysfunctional. This restricts metabolism to anaerobic glycolysis and promotes cell proliferation.
doi_str_mv 10.1186/2051-5960-2-1
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3912901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541270106</galeid><sourcerecordid>A541270106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-5945b40bc34686107b859307094a8c593d04a2ebedd269e2446b92b5c5c7a6683</originalsourceid><addsrcrecordid>eNptUU1rwyAAlbGxjq7HXYcw2C2dGjXxMijdJyvbpTuLMaZxmFhiWti_n6FbaWF68KnvPZ4-AK4wmmKc8zuCGE6Y4CghCT4BF_v96QEegUkIXygOgXGa5-dgRGiap5TnF-BtWRtoS9P2trJa9da30Fewsb3XtW_LzioHH95ncKsibPsAbQtXzvrCqdD7RsFm46LWd425BGeVcsFMftcx-Hx6XM5fksXH8-t8tkg0Y7iPmSgrKCr0kIBjlBU5EynKkKAq1xGWiCpiClOWhAtDKOWFIAXTTGeK8zwdg_ud73pTNKbUMXynnFx3tlHdt_TKyuOb1tZy5bcyFZgIhKPBzc5gpZyRtq18pOnGBi1njGKSIYx4ZE3_YcVZmsZq35rKxvMjwe2BoDbK9XXwbjN8ajgmJjui7nwInan22TGSQ7FyKE8O5Ukih7zXhw_es_9qTH8ATmGbxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The identification of mitochondrial DNA variants in glioblastoma multiforme</title><source>Open Access: PubMed Central</source><creator>Yeung, Ka Yu ; Dickinson, Adam ; Donoghue, Jacqueline F ; Polekhina, Galina ; White, Stefan J ; Grammatopoulos, Dimitris K ; McKenzie, Matthew ; Johns, Terrance G ; St John, Justin C</creator><creatorcontrib>Yeung, Ka Yu ; Dickinson, Adam ; Donoghue, Jacqueline F ; Polekhina, Galina ; White, Stefan J ; Grammatopoulos, Dimitris K ; McKenzie, Matthew ; Johns, Terrance G ; St John, Justin C</creatorcontrib><description>Mitochondrial DNA (mtDNA) encodes key proteins of the electron transfer chain (ETC), which produces ATP through oxidative phosphorylation (OXPHOS) and is essential for cells to perform specialised functions. Tumor-initiating cells use aerobic glycolysis, a combination of glycolysis and low levels of OXPHOS, to promote rapid cell proliferation and tumor growth. Glioblastoma multiforme (GBM) is an aggressively malignant brain tumor and mitochondria have been proposed to play a vital role in GBM tumorigenesis. Using next generation sequencing and high resolution melt analysis, we identified a large number of mtDNA variants within coding and non-coding regions of GBM cell lines and predicted their disease-causing potential through in silico modeling. The frequency of variants was greatest in the D-loop and origin of light strand replication in non-coding regions. ND6 was the most susceptible coding gene to mutation whilst ND4 had the highest frequency of mutation. Both genes encode subunits of complex I of the ETC. These variants were not detected in unaffected brain samples and many have not been previously reported. Depletion of HSR-GBM1 cells to varying degrees of their mtDNA followed by transplantation into immunedeficient mice resulted in the repopulation of the same variants during tumorigenesis. Likewise, de novo variants identified in other GBM cell lines were also incorporated. Nevertheless, ND4 and ND6 were still the most affected genes. We confirmed the presence of these variants in high grade gliomas. These novel variants contribute to GBM by rendering the ETC. partially dysfunctional. This restricts metabolism to anaerobic glycolysis and promotes cell proliferation.</description><identifier>ISSN: 2051-5960</identifier><identifier>EISSN: 2051-5960</identifier><identifier>DOI: 10.1186/2051-5960-2-1</identifier><identifier>PMID: 24383468</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Animals ; Antimetabolites - pharmacology ; Brain ; Brain Neoplasms - genetics ; Brain Neoplasms - pathology ; Brain tumors ; Cell Line, Tumor ; Cell Transformation, Neoplastic ; DNA, Mitochondrial - genetics ; DNA, Mitochondrial - metabolism ; Gene Expression Regulation, Neoplastic - drug effects ; Gene Expression Regulation, Neoplastic - physiology ; Genetic aspects ; Genetic Variation - genetics ; Glioblastoma - genetics ; Glioblastoma - pathology ; Glycolysis - drug effects ; Heterografts ; High-Throughput Nucleotide Sequencing ; Humans ; Medical research ; Medicine, Experimental ; Mice ; Mitochondrial Proton-Translocating ATPases - genetics ; Mitochondrial Proton-Translocating ATPases - metabolism ; Models, Molecular ; Neural Stem Cells - metabolism ; Oxidative Phosphorylation - drug effects ; Zalcitabine - pharmacology</subject><ispartof>Acta neuropathologica communications, 2014-01, Vol.2 (1), p.1-1, Article 1</ispartof><rights>COPYRIGHT 2014 BioMed Central Ltd.</rights><rights>Copyright © 2014 Yeung et al.; licensee BioMed Central Ltd. 2014 Yeung et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-5945b40bc34686107b859307094a8c593d04a2ebedd269e2446b92b5c5c7a6683</citedby><cites>FETCH-LOGICAL-c551t-5945b40bc34686107b859307094a8c593d04a2ebedd269e2446b92b5c5c7a6683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912901/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912901/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24383468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeung, Ka Yu</creatorcontrib><creatorcontrib>Dickinson, Adam</creatorcontrib><creatorcontrib>Donoghue, Jacqueline F</creatorcontrib><creatorcontrib>Polekhina, Galina</creatorcontrib><creatorcontrib>White, Stefan J</creatorcontrib><creatorcontrib>Grammatopoulos, Dimitris K</creatorcontrib><creatorcontrib>McKenzie, Matthew</creatorcontrib><creatorcontrib>Johns, Terrance G</creatorcontrib><creatorcontrib>St John, Justin C</creatorcontrib><title>The identification of mitochondrial DNA variants in glioblastoma multiforme</title><title>Acta neuropathologica communications</title><addtitle>Acta Neuropathol Commun</addtitle><description>Mitochondrial DNA (mtDNA) encodes key proteins of the electron transfer chain (ETC), which produces ATP through oxidative phosphorylation (OXPHOS) and is essential for cells to perform specialised functions. Tumor-initiating cells use aerobic glycolysis, a combination of glycolysis and low levels of OXPHOS, to promote rapid cell proliferation and tumor growth. Glioblastoma multiforme (GBM) is an aggressively malignant brain tumor and mitochondria have been proposed to play a vital role in GBM tumorigenesis. Using next generation sequencing and high resolution melt analysis, we identified a large number of mtDNA variants within coding and non-coding regions of GBM cell lines and predicted their disease-causing potential through in silico modeling. The frequency of variants was greatest in the D-loop and origin of light strand replication in non-coding regions. ND6 was the most susceptible coding gene to mutation whilst ND4 had the highest frequency of mutation. Both genes encode subunits of complex I of the ETC. These variants were not detected in unaffected brain samples and many have not been previously reported. Depletion of HSR-GBM1 cells to varying degrees of their mtDNA followed by transplantation into immunedeficient mice resulted in the repopulation of the same variants during tumorigenesis. Likewise, de novo variants identified in other GBM cell lines were also incorporated. Nevertheless, ND4 and ND6 were still the most affected genes. We confirmed the presence of these variants in high grade gliomas. These novel variants contribute to GBM by rendering the ETC. partially dysfunctional. This restricts metabolism to anaerobic glycolysis and promotes cell proliferation.</description><subject>Analysis</subject><subject>Animals</subject><subject>Antimetabolites - pharmacology</subject><subject>Brain</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain tumors</subject><subject>Cell Line, Tumor</subject><subject>Cell Transformation, Neoplastic</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Gene Expression Regulation, Neoplastic - physiology</subject><subject>Genetic aspects</subject><subject>Genetic Variation - genetics</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - pathology</subject><subject>Glycolysis - drug effects</subject><subject>Heterografts</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Mice</subject><subject>Mitochondrial Proton-Translocating ATPases - genetics</subject><subject>Mitochondrial Proton-Translocating ATPases - metabolism</subject><subject>Models, Molecular</subject><subject>Neural Stem Cells - metabolism</subject><subject>Oxidative Phosphorylation - drug effects</subject><subject>Zalcitabine - pharmacology</subject><issn>2051-5960</issn><issn>2051-5960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptUU1rwyAAlbGxjq7HXYcw2C2dGjXxMijdJyvbpTuLMaZxmFhiWti_n6FbaWF68KnvPZ4-AK4wmmKc8zuCGE6Y4CghCT4BF_v96QEegUkIXygOgXGa5-dgRGiap5TnF-BtWRtoS9P2trJa9da30Fewsb3XtW_LzioHH95ncKsibPsAbQtXzvrCqdD7RsFm46LWd425BGeVcsFMftcx-Hx6XM5fksXH8-t8tkg0Y7iPmSgrKCr0kIBjlBU5EynKkKAq1xGWiCpiClOWhAtDKOWFIAXTTGeK8zwdg_ud73pTNKbUMXynnFx3tlHdt_TKyuOb1tZy5bcyFZgIhKPBzc5gpZyRtq18pOnGBi1njGKSIYx4ZE3_YcVZmsZq35rKxvMjwe2BoDbK9XXwbjN8ajgmJjui7nwInan22TGSQ7FyKE8O5Ukih7zXhw_es_9qTH8ATmGbxw</recordid><startdate>20140102</startdate><enddate>20140102</enddate><creator>Yeung, Ka Yu</creator><creator>Dickinson, Adam</creator><creator>Donoghue, Jacqueline F</creator><creator>Polekhina, Galina</creator><creator>White, Stefan J</creator><creator>Grammatopoulos, Dimitris K</creator><creator>McKenzie, Matthew</creator><creator>Johns, Terrance G</creator><creator>St John, Justin C</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20140102</creationdate><title>The identification of mitochondrial DNA variants in glioblastoma multiforme</title><author>Yeung, Ka Yu ; Dickinson, Adam ; Donoghue, Jacqueline F ; Polekhina, Galina ; White, Stefan J ; Grammatopoulos, Dimitris K ; McKenzie, Matthew ; Johns, Terrance G ; St John, Justin C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-5945b40bc34686107b859307094a8c593d04a2ebedd269e2446b92b5c5c7a6683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Antimetabolites - pharmacology</topic><topic>Brain</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain tumors</topic><topic>Cell Line, Tumor</topic><topic>Cell Transformation, Neoplastic</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Gene Expression Regulation, Neoplastic - physiology</topic><topic>Genetic aspects</topic><topic>Genetic Variation - genetics</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - pathology</topic><topic>Glycolysis - drug effects</topic><topic>Heterografts</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Mice</topic><topic>Mitochondrial Proton-Translocating ATPases - genetics</topic><topic>Mitochondrial Proton-Translocating ATPases - metabolism</topic><topic>Models, Molecular</topic><topic>Neural Stem Cells - metabolism</topic><topic>Oxidative Phosphorylation - drug effects</topic><topic>Zalcitabine - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeung, Ka Yu</creatorcontrib><creatorcontrib>Dickinson, Adam</creatorcontrib><creatorcontrib>Donoghue, Jacqueline F</creatorcontrib><creatorcontrib>Polekhina, Galina</creatorcontrib><creatorcontrib>White, Stefan J</creatorcontrib><creatorcontrib>Grammatopoulos, Dimitris K</creatorcontrib><creatorcontrib>McKenzie, Matthew</creatorcontrib><creatorcontrib>Johns, Terrance G</creatorcontrib><creatorcontrib>St John, Justin C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta neuropathologica communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeung, Ka Yu</au><au>Dickinson, Adam</au><au>Donoghue, Jacqueline F</au><au>Polekhina, Galina</au><au>White, Stefan J</au><au>Grammatopoulos, Dimitris K</au><au>McKenzie, Matthew</au><au>Johns, Terrance G</au><au>St John, Justin C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The identification of mitochondrial DNA variants in glioblastoma multiforme</atitle><jtitle>Acta neuropathologica communications</jtitle><addtitle>Acta Neuropathol Commun</addtitle><date>2014-01-02</date><risdate>2014</risdate><volume>2</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><artnum>1</artnum><issn>2051-5960</issn><eissn>2051-5960</eissn><abstract>Mitochondrial DNA (mtDNA) encodes key proteins of the electron transfer chain (ETC), which produces ATP through oxidative phosphorylation (OXPHOS) and is essential for cells to perform specialised functions. Tumor-initiating cells use aerobic glycolysis, a combination of glycolysis and low levels of OXPHOS, to promote rapid cell proliferation and tumor growth. Glioblastoma multiforme (GBM) is an aggressively malignant brain tumor and mitochondria have been proposed to play a vital role in GBM tumorigenesis. Using next generation sequencing and high resolution melt analysis, we identified a large number of mtDNA variants within coding and non-coding regions of GBM cell lines and predicted their disease-causing potential through in silico modeling. The frequency of variants was greatest in the D-loop and origin of light strand replication in non-coding regions. ND6 was the most susceptible coding gene to mutation whilst ND4 had the highest frequency of mutation. Both genes encode subunits of complex I of the ETC. These variants were not detected in unaffected brain samples and many have not been previously reported. Depletion of HSR-GBM1 cells to varying degrees of their mtDNA followed by transplantation into immunedeficient mice resulted in the repopulation of the same variants during tumorigenesis. Likewise, de novo variants identified in other GBM cell lines were also incorporated. Nevertheless, ND4 and ND6 were still the most affected genes. We confirmed the presence of these variants in high grade gliomas. These novel variants contribute to GBM by rendering the ETC. partially dysfunctional. This restricts metabolism to anaerobic glycolysis and promotes cell proliferation.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>24383468</pmid><doi>10.1186/2051-5960-2-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2051-5960
ispartof Acta neuropathologica communications, 2014-01, Vol.2 (1), p.1-1, Article 1
issn 2051-5960
2051-5960
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3912901
source Open Access: PubMed Central
subjects Analysis
Animals
Antimetabolites - pharmacology
Brain
Brain Neoplasms - genetics
Brain Neoplasms - pathology
Brain tumors
Cell Line, Tumor
Cell Transformation, Neoplastic
DNA, Mitochondrial - genetics
DNA, Mitochondrial - metabolism
Gene Expression Regulation, Neoplastic - drug effects
Gene Expression Regulation, Neoplastic - physiology
Genetic aspects
Genetic Variation - genetics
Glioblastoma - genetics
Glioblastoma - pathology
Glycolysis - drug effects
Heterografts
High-Throughput Nucleotide Sequencing
Humans
Medical research
Medicine, Experimental
Mice
Mitochondrial Proton-Translocating ATPases - genetics
Mitochondrial Proton-Translocating ATPases - metabolism
Models, Molecular
Neural Stem Cells - metabolism
Oxidative Phosphorylation - drug effects
Zalcitabine - pharmacology
title The identification of mitochondrial DNA variants in glioblastoma multiforme
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A33%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20identification%20of%20mitochondrial%20DNA%20variants%20in%20glioblastoma%20multiforme&rft.jtitle=Acta%20neuropathologica%20communications&rft.au=Yeung,%20Ka%20Yu&rft.date=2014-01-02&rft.volume=2&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.artnum=1&rft.issn=2051-5960&rft.eissn=2051-5960&rft_id=info:doi/10.1186/2051-5960-2-1&rft_dat=%3Cgale_pubme%3EA541270106%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c551t-5945b40bc34686107b859307094a8c593d04a2ebedd269e2446b92b5c5c7a6683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/24383468&rft_galeid=A541270106&rfr_iscdi=true