Loading…
The identification of mitochondrial DNA variants in glioblastoma multiforme
Mitochondrial DNA (mtDNA) encodes key proteins of the electron transfer chain (ETC), which produces ATP through oxidative phosphorylation (OXPHOS) and is essential for cells to perform specialised functions. Tumor-initiating cells use aerobic glycolysis, a combination of glycolysis and low levels of...
Saved in:
Published in: | Acta neuropathologica communications 2014-01, Vol.2 (1), p.1-1, Article 1 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c551t-5945b40bc34686107b859307094a8c593d04a2ebedd269e2446b92b5c5c7a6683 |
---|---|
cites | cdi_FETCH-LOGICAL-c551t-5945b40bc34686107b859307094a8c593d04a2ebedd269e2446b92b5c5c7a6683 |
container_end_page | 1 |
container_issue | 1 |
container_start_page | 1 |
container_title | Acta neuropathologica communications |
container_volume | 2 |
creator | Yeung, Ka Yu Dickinson, Adam Donoghue, Jacqueline F Polekhina, Galina White, Stefan J Grammatopoulos, Dimitris K McKenzie, Matthew Johns, Terrance G St John, Justin C |
description | Mitochondrial DNA (mtDNA) encodes key proteins of the electron transfer chain (ETC), which produces ATP through oxidative phosphorylation (OXPHOS) and is essential for cells to perform specialised functions. Tumor-initiating cells use aerobic glycolysis, a combination of glycolysis and low levels of OXPHOS, to promote rapid cell proliferation and tumor growth. Glioblastoma multiforme (GBM) is an aggressively malignant brain tumor and mitochondria have been proposed to play a vital role in GBM tumorigenesis.
Using next generation sequencing and high resolution melt analysis, we identified a large number of mtDNA variants within coding and non-coding regions of GBM cell lines and predicted their disease-causing potential through in silico modeling. The frequency of variants was greatest in the D-loop and origin of light strand replication in non-coding regions. ND6 was the most susceptible coding gene to mutation whilst ND4 had the highest frequency of mutation. Both genes encode subunits of complex I of the ETC. These variants were not detected in unaffected brain samples and many have not been previously reported. Depletion of HSR-GBM1 cells to varying degrees of their mtDNA followed by transplantation into immunedeficient mice resulted in the repopulation of the same variants during tumorigenesis. Likewise, de novo variants identified in other GBM cell lines were also incorporated. Nevertheless, ND4 and ND6 were still the most affected genes. We confirmed the presence of these variants in high grade gliomas.
These novel variants contribute to GBM by rendering the ETC. partially dysfunctional. This restricts metabolism to anaerobic glycolysis and promotes cell proliferation. |
doi_str_mv | 10.1186/2051-5960-2-1 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3912901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541270106</galeid><sourcerecordid>A541270106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-5945b40bc34686107b859307094a8c593d04a2ebedd269e2446b92b5c5c7a6683</originalsourceid><addsrcrecordid>eNptUU1rwyAAlbGxjq7HXYcw2C2dGjXxMijdJyvbpTuLMaZxmFhiWti_n6FbaWF68KnvPZ4-AK4wmmKc8zuCGE6Y4CghCT4BF_v96QEegUkIXygOgXGa5-dgRGiap5TnF-BtWRtoS9P2trJa9da30Fewsb3XtW_LzioHH95ncKsibPsAbQtXzvrCqdD7RsFm46LWd425BGeVcsFMftcx-Hx6XM5fksXH8-t8tkg0Y7iPmSgrKCr0kIBjlBU5EynKkKAq1xGWiCpiClOWhAtDKOWFIAXTTGeK8zwdg_ud73pTNKbUMXynnFx3tlHdt_TKyuOb1tZy5bcyFZgIhKPBzc5gpZyRtq18pOnGBi1njGKSIYx4ZE3_YcVZmsZq35rKxvMjwe2BoDbK9XXwbjN8ajgmJjui7nwInan22TGSQ7FyKE8O5Ukih7zXhw_es_9qTH8ATmGbxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The identification of mitochondrial DNA variants in glioblastoma multiforme</title><source>Open Access: PubMed Central</source><creator>Yeung, Ka Yu ; Dickinson, Adam ; Donoghue, Jacqueline F ; Polekhina, Galina ; White, Stefan J ; Grammatopoulos, Dimitris K ; McKenzie, Matthew ; Johns, Terrance G ; St John, Justin C</creator><creatorcontrib>Yeung, Ka Yu ; Dickinson, Adam ; Donoghue, Jacqueline F ; Polekhina, Galina ; White, Stefan J ; Grammatopoulos, Dimitris K ; McKenzie, Matthew ; Johns, Terrance G ; St John, Justin C</creatorcontrib><description>Mitochondrial DNA (mtDNA) encodes key proteins of the electron transfer chain (ETC), which produces ATP through oxidative phosphorylation (OXPHOS) and is essential for cells to perform specialised functions. Tumor-initiating cells use aerobic glycolysis, a combination of glycolysis and low levels of OXPHOS, to promote rapid cell proliferation and tumor growth. Glioblastoma multiforme (GBM) is an aggressively malignant brain tumor and mitochondria have been proposed to play a vital role in GBM tumorigenesis.
Using next generation sequencing and high resolution melt analysis, we identified a large number of mtDNA variants within coding and non-coding regions of GBM cell lines and predicted their disease-causing potential through in silico modeling. The frequency of variants was greatest in the D-loop and origin of light strand replication in non-coding regions. ND6 was the most susceptible coding gene to mutation whilst ND4 had the highest frequency of mutation. Both genes encode subunits of complex I of the ETC. These variants were not detected in unaffected brain samples and many have not been previously reported. Depletion of HSR-GBM1 cells to varying degrees of their mtDNA followed by transplantation into immunedeficient mice resulted in the repopulation of the same variants during tumorigenesis. Likewise, de novo variants identified in other GBM cell lines were also incorporated. Nevertheless, ND4 and ND6 were still the most affected genes. We confirmed the presence of these variants in high grade gliomas.
These novel variants contribute to GBM by rendering the ETC. partially dysfunctional. This restricts metabolism to anaerobic glycolysis and promotes cell proliferation.</description><identifier>ISSN: 2051-5960</identifier><identifier>EISSN: 2051-5960</identifier><identifier>DOI: 10.1186/2051-5960-2-1</identifier><identifier>PMID: 24383468</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Animals ; Antimetabolites - pharmacology ; Brain ; Brain Neoplasms - genetics ; Brain Neoplasms - pathology ; Brain tumors ; Cell Line, Tumor ; Cell Transformation, Neoplastic ; DNA, Mitochondrial - genetics ; DNA, Mitochondrial - metabolism ; Gene Expression Regulation, Neoplastic - drug effects ; Gene Expression Regulation, Neoplastic - physiology ; Genetic aspects ; Genetic Variation - genetics ; Glioblastoma - genetics ; Glioblastoma - pathology ; Glycolysis - drug effects ; Heterografts ; High-Throughput Nucleotide Sequencing ; Humans ; Medical research ; Medicine, Experimental ; Mice ; Mitochondrial Proton-Translocating ATPases - genetics ; Mitochondrial Proton-Translocating ATPases - metabolism ; Models, Molecular ; Neural Stem Cells - metabolism ; Oxidative Phosphorylation - drug effects ; Zalcitabine - pharmacology</subject><ispartof>Acta neuropathologica communications, 2014-01, Vol.2 (1), p.1-1, Article 1</ispartof><rights>COPYRIGHT 2014 BioMed Central Ltd.</rights><rights>Copyright © 2014 Yeung et al.; licensee BioMed Central Ltd. 2014 Yeung et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-5945b40bc34686107b859307094a8c593d04a2ebedd269e2446b92b5c5c7a6683</citedby><cites>FETCH-LOGICAL-c551t-5945b40bc34686107b859307094a8c593d04a2ebedd269e2446b92b5c5c7a6683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912901/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912901/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24383468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeung, Ka Yu</creatorcontrib><creatorcontrib>Dickinson, Adam</creatorcontrib><creatorcontrib>Donoghue, Jacqueline F</creatorcontrib><creatorcontrib>Polekhina, Galina</creatorcontrib><creatorcontrib>White, Stefan J</creatorcontrib><creatorcontrib>Grammatopoulos, Dimitris K</creatorcontrib><creatorcontrib>McKenzie, Matthew</creatorcontrib><creatorcontrib>Johns, Terrance G</creatorcontrib><creatorcontrib>St John, Justin C</creatorcontrib><title>The identification of mitochondrial DNA variants in glioblastoma multiforme</title><title>Acta neuropathologica communications</title><addtitle>Acta Neuropathol Commun</addtitle><description>Mitochondrial DNA (mtDNA) encodes key proteins of the electron transfer chain (ETC), which produces ATP through oxidative phosphorylation (OXPHOS) and is essential for cells to perform specialised functions. Tumor-initiating cells use aerobic glycolysis, a combination of glycolysis and low levels of OXPHOS, to promote rapid cell proliferation and tumor growth. Glioblastoma multiforme (GBM) is an aggressively malignant brain tumor and mitochondria have been proposed to play a vital role in GBM tumorigenesis.
Using next generation sequencing and high resolution melt analysis, we identified a large number of mtDNA variants within coding and non-coding regions of GBM cell lines and predicted their disease-causing potential through in silico modeling. The frequency of variants was greatest in the D-loop and origin of light strand replication in non-coding regions. ND6 was the most susceptible coding gene to mutation whilst ND4 had the highest frequency of mutation. Both genes encode subunits of complex I of the ETC. These variants were not detected in unaffected brain samples and many have not been previously reported. Depletion of HSR-GBM1 cells to varying degrees of their mtDNA followed by transplantation into immunedeficient mice resulted in the repopulation of the same variants during tumorigenesis. Likewise, de novo variants identified in other GBM cell lines were also incorporated. Nevertheless, ND4 and ND6 were still the most affected genes. We confirmed the presence of these variants in high grade gliomas.
These novel variants contribute to GBM by rendering the ETC. partially dysfunctional. This restricts metabolism to anaerobic glycolysis and promotes cell proliferation.</description><subject>Analysis</subject><subject>Animals</subject><subject>Antimetabolites - pharmacology</subject><subject>Brain</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain tumors</subject><subject>Cell Line, Tumor</subject><subject>Cell Transformation, Neoplastic</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Gene Expression Regulation, Neoplastic - physiology</subject><subject>Genetic aspects</subject><subject>Genetic Variation - genetics</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - pathology</subject><subject>Glycolysis - drug effects</subject><subject>Heterografts</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Mice</subject><subject>Mitochondrial Proton-Translocating ATPases - genetics</subject><subject>Mitochondrial Proton-Translocating ATPases - metabolism</subject><subject>Models, Molecular</subject><subject>Neural Stem Cells - metabolism</subject><subject>Oxidative Phosphorylation - drug effects</subject><subject>Zalcitabine - pharmacology</subject><issn>2051-5960</issn><issn>2051-5960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptUU1rwyAAlbGxjq7HXYcw2C2dGjXxMijdJyvbpTuLMaZxmFhiWti_n6FbaWF68KnvPZ4-AK4wmmKc8zuCGE6Y4CghCT4BF_v96QEegUkIXygOgXGa5-dgRGiap5TnF-BtWRtoS9P2trJa9da30Fewsb3XtW_LzioHH95ncKsibPsAbQtXzvrCqdD7RsFm46LWd425BGeVcsFMftcx-Hx6XM5fksXH8-t8tkg0Y7iPmSgrKCr0kIBjlBU5EynKkKAq1xGWiCpiClOWhAtDKOWFIAXTTGeK8zwdg_ud73pTNKbUMXynnFx3tlHdt_TKyuOb1tZy5bcyFZgIhKPBzc5gpZyRtq18pOnGBi1njGKSIYx4ZE3_YcVZmsZq35rKxvMjwe2BoDbK9XXwbjN8ajgmJjui7nwInan22TGSQ7FyKE8O5Ukih7zXhw_es_9qTH8ATmGbxw</recordid><startdate>20140102</startdate><enddate>20140102</enddate><creator>Yeung, Ka Yu</creator><creator>Dickinson, Adam</creator><creator>Donoghue, Jacqueline F</creator><creator>Polekhina, Galina</creator><creator>White, Stefan J</creator><creator>Grammatopoulos, Dimitris K</creator><creator>McKenzie, Matthew</creator><creator>Johns, Terrance G</creator><creator>St John, Justin C</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20140102</creationdate><title>The identification of mitochondrial DNA variants in glioblastoma multiforme</title><author>Yeung, Ka Yu ; Dickinson, Adam ; Donoghue, Jacqueline F ; Polekhina, Galina ; White, Stefan J ; Grammatopoulos, Dimitris K ; McKenzie, Matthew ; Johns, Terrance G ; St John, Justin C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-5945b40bc34686107b859307094a8c593d04a2ebedd269e2446b92b5c5c7a6683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Antimetabolites - pharmacology</topic><topic>Brain</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain tumors</topic><topic>Cell Line, Tumor</topic><topic>Cell Transformation, Neoplastic</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Gene Expression Regulation, Neoplastic - physiology</topic><topic>Genetic aspects</topic><topic>Genetic Variation - genetics</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - pathology</topic><topic>Glycolysis - drug effects</topic><topic>Heterografts</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Mice</topic><topic>Mitochondrial Proton-Translocating ATPases - genetics</topic><topic>Mitochondrial Proton-Translocating ATPases - metabolism</topic><topic>Models, Molecular</topic><topic>Neural Stem Cells - metabolism</topic><topic>Oxidative Phosphorylation - drug effects</topic><topic>Zalcitabine - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeung, Ka Yu</creatorcontrib><creatorcontrib>Dickinson, Adam</creatorcontrib><creatorcontrib>Donoghue, Jacqueline F</creatorcontrib><creatorcontrib>Polekhina, Galina</creatorcontrib><creatorcontrib>White, Stefan J</creatorcontrib><creatorcontrib>Grammatopoulos, Dimitris K</creatorcontrib><creatorcontrib>McKenzie, Matthew</creatorcontrib><creatorcontrib>Johns, Terrance G</creatorcontrib><creatorcontrib>St John, Justin C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta neuropathologica communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeung, Ka Yu</au><au>Dickinson, Adam</au><au>Donoghue, Jacqueline F</au><au>Polekhina, Galina</au><au>White, Stefan J</au><au>Grammatopoulos, Dimitris K</au><au>McKenzie, Matthew</au><au>Johns, Terrance G</au><au>St John, Justin C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The identification of mitochondrial DNA variants in glioblastoma multiforme</atitle><jtitle>Acta neuropathologica communications</jtitle><addtitle>Acta Neuropathol Commun</addtitle><date>2014-01-02</date><risdate>2014</risdate><volume>2</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><artnum>1</artnum><issn>2051-5960</issn><eissn>2051-5960</eissn><abstract>Mitochondrial DNA (mtDNA) encodes key proteins of the electron transfer chain (ETC), which produces ATP through oxidative phosphorylation (OXPHOS) and is essential for cells to perform specialised functions. Tumor-initiating cells use aerobic glycolysis, a combination of glycolysis and low levels of OXPHOS, to promote rapid cell proliferation and tumor growth. Glioblastoma multiforme (GBM) is an aggressively malignant brain tumor and mitochondria have been proposed to play a vital role in GBM tumorigenesis.
Using next generation sequencing and high resolution melt analysis, we identified a large number of mtDNA variants within coding and non-coding regions of GBM cell lines and predicted their disease-causing potential through in silico modeling. The frequency of variants was greatest in the D-loop and origin of light strand replication in non-coding regions. ND6 was the most susceptible coding gene to mutation whilst ND4 had the highest frequency of mutation. Both genes encode subunits of complex I of the ETC. These variants were not detected in unaffected brain samples and many have not been previously reported. Depletion of HSR-GBM1 cells to varying degrees of their mtDNA followed by transplantation into immunedeficient mice resulted in the repopulation of the same variants during tumorigenesis. Likewise, de novo variants identified in other GBM cell lines were also incorporated. Nevertheless, ND4 and ND6 were still the most affected genes. We confirmed the presence of these variants in high grade gliomas.
These novel variants contribute to GBM by rendering the ETC. partially dysfunctional. This restricts metabolism to anaerobic glycolysis and promotes cell proliferation.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>24383468</pmid><doi>10.1186/2051-5960-2-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-5960 |
ispartof | Acta neuropathologica communications, 2014-01, Vol.2 (1), p.1-1, Article 1 |
issn | 2051-5960 2051-5960 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3912901 |
source | Open Access: PubMed Central |
subjects | Analysis Animals Antimetabolites - pharmacology Brain Brain Neoplasms - genetics Brain Neoplasms - pathology Brain tumors Cell Line, Tumor Cell Transformation, Neoplastic DNA, Mitochondrial - genetics DNA, Mitochondrial - metabolism Gene Expression Regulation, Neoplastic - drug effects Gene Expression Regulation, Neoplastic - physiology Genetic aspects Genetic Variation - genetics Glioblastoma - genetics Glioblastoma - pathology Glycolysis - drug effects Heterografts High-Throughput Nucleotide Sequencing Humans Medical research Medicine, Experimental Mice Mitochondrial Proton-Translocating ATPases - genetics Mitochondrial Proton-Translocating ATPases - metabolism Models, Molecular Neural Stem Cells - metabolism Oxidative Phosphorylation - drug effects Zalcitabine - pharmacology |
title | The identification of mitochondrial DNA variants in glioblastoma multiforme |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A33%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20identification%20of%20mitochondrial%20DNA%20variants%20in%20glioblastoma%20multiforme&rft.jtitle=Acta%20neuropathologica%20communications&rft.au=Yeung,%20Ka%20Yu&rft.date=2014-01-02&rft.volume=2&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.artnum=1&rft.issn=2051-5960&rft.eissn=2051-5960&rft_id=info:doi/10.1186/2051-5960-2-1&rft_dat=%3Cgale_pubme%3EA541270106%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c551t-5945b40bc34686107b859307094a8c593d04a2ebedd269e2446b92b5c5c7a6683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/24383468&rft_galeid=A541270106&rfr_iscdi=true |