Loading…

Perinatal hyperoxic exposure reconfigures the central respiratory network contributing to intolerance to anoxia in newborn rat pups

Perinatal exposure to hyperoxia (30-60% O2) alters the respiratory control system via modulation of peripheral arterial chemoreceptor development and function. Furthermore, hyperoxic exposure during the first two postnatal weeks of life can alternatively modulate the different phases of the hypoxic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physiology (1985) 2014-01, Vol.116 (1), p.47-53
Main Authors: Bierman, Alexis M, Tankersley, Clarke G, Wilson, Christopher G, Chavez-Valdez, Raul, Gauda, Estelle B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-ce0a2ad24836c27c5f030335eb46c131da7ee89a6003ea45c222b99694503ea03
cites cdi_FETCH-LOGICAL-c478t-ce0a2ad24836c27c5f030335eb46c131da7ee89a6003ea45c222b99694503ea03
container_end_page 53
container_issue 1
container_start_page 47
container_title Journal of applied physiology (1985)
container_volume 116
creator Bierman, Alexis M
Tankersley, Clarke G
Wilson, Christopher G
Chavez-Valdez, Raul
Gauda, Estelle B
description Perinatal exposure to hyperoxia (30-60% O2) alters the respiratory control system via modulation of peripheral arterial chemoreceptor development and function. Furthermore, hyperoxic exposure during the first two postnatal weeks of life can alternatively modulate the different phases of the hypoxic ventilatory response. Given the effects of perinatal hyperoxia, the aims of our study were 1) to determine the effect on survival time in response to lethal anoxic stimuli in rat pups and 2) to characterize the output of the isolated central respiratory network in response to acute hypoxic stimuli. We hypothesized that perinatal hyperoxic exposure would modify the neonatal rat ventilatory response to anoxia by affecting a central component of the respiratory network in addition to the maturation of the carotid body chemoreceptors. We found that animals continuously exposed to 60% oxygen up to age 5 days after parturition (P5) have reduced breathing frequency at baseline and within the first 10 min of a fatal anoxic challenge. Hyperoxic rat pups also have a shortened time to last gasp in response to anoxia that is not associated with lung injury or inflammation. This study is the first to demonstrate that these in vivo findings correlate with reduced phrenic burst frequency from the isolated brainstem ex vivo. Thus hyperoxic exposure reduced the phrenic burst frequency at baseline and in response to ex vivo anoxia. Importantly, our data suggest that perinatal hyperoxia alters ventilation and the response to anoxia at P5 in part by altering the frequency of phrenic bursts generated by the central respiratory network.
doi_str_mv 10.1152/japplphysiol.00224.2013
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3921366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3178464921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-ce0a2ad24836c27c5f030335eb46c131da7ee89a6003ea45c222b99694503ea03</originalsourceid><addsrcrecordid>eNqFkktvEzEUhS0EoqHwF8ASGzYT_PbMBglVvKRKsIC15Tg3icPENranbdb8cTw0VIUNK_ve-50jX-sg9IKSJaWSvd7blMa0OxYfxyUhjIklI5Q_QIs2ZR1VhD5Ei15L0mnZ6zP0pJQ9IVQISR-jMyao1JKJBfr5BbIPttoR744JcrzxDsNNimXKgDO4GDZ-2-4F1x1gB6HmxrY6-WxrzEccoF7H_B03tGa_mqoPW1wj9qHGEbINDubShuZtW7cJrlcxB9z0OE2pPEWPNnYs8Ox0nqNv7999vfjYXX7-8Oni7WXnhO5r54BYZtdM9Fw5pp3cEE44l7ASylFO11YD9INVhHCwQjrG2GoY1CDk3CD8HL259U3T6gDr0y4mZX-w-Wii9ebvSfA7s41Xhg-McqWawauTQY4_JijVHHxxMI42QJyKoUoRQXpJ9f9RMRAtaa9pQ1_-g-7jlEP7iUZpJYZB05nSt5TLsZQMm7t3U2LmTJj7mTC_M2HmTDTl8_tr3-n-hID_Aq28upY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1476499711</pqid></control><display><type>article</type><title>Perinatal hyperoxic exposure reconfigures the central respiratory network contributing to intolerance to anoxia in newborn rat pups</title><source>American Physiological Society Journals</source><source>American Physiological Society:Jisc Collections:American Physiological Society Journals ‘Read Publish &amp; Join’ Agreement:2023-2024 (Reading list)</source><creator>Bierman, Alexis M ; Tankersley, Clarke G ; Wilson, Christopher G ; Chavez-Valdez, Raul ; Gauda, Estelle B</creator><creatorcontrib>Bierman, Alexis M ; Tankersley, Clarke G ; Wilson, Christopher G ; Chavez-Valdez, Raul ; Gauda, Estelle B</creatorcontrib><description>Perinatal exposure to hyperoxia (30-60% O2) alters the respiratory control system via modulation of peripheral arterial chemoreceptor development and function. Furthermore, hyperoxic exposure during the first two postnatal weeks of life can alternatively modulate the different phases of the hypoxic ventilatory response. Given the effects of perinatal hyperoxia, the aims of our study were 1) to determine the effect on survival time in response to lethal anoxic stimuli in rat pups and 2) to characterize the output of the isolated central respiratory network in response to acute hypoxic stimuli. We hypothesized that perinatal hyperoxic exposure would modify the neonatal rat ventilatory response to anoxia by affecting a central component of the respiratory network in addition to the maturation of the carotid body chemoreceptors. We found that animals continuously exposed to 60% oxygen up to age 5 days after parturition (P5) have reduced breathing frequency at baseline and within the first 10 min of a fatal anoxic challenge. Hyperoxic rat pups also have a shortened time to last gasp in response to anoxia that is not associated with lung injury or inflammation. This study is the first to demonstrate that these in vivo findings correlate with reduced phrenic burst frequency from the isolated brainstem ex vivo. Thus hyperoxic exposure reduced the phrenic burst frequency at baseline and in response to ex vivo anoxia. Importantly, our data suggest that perinatal hyperoxia alters ventilation and the response to anoxia at P5 in part by altering the frequency of phrenic bursts generated by the central respiratory network.</description><identifier>ISSN: 8750-7587</identifier><identifier>EISSN: 1522-1601</identifier><identifier>DOI: 10.1152/japplphysiol.00224.2013</identifier><identifier>PMID: 24157524</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Animals ; Animals, Newborn - physiology ; Carotid Body - metabolism ; Carotid Body - physiopathology ; Central Nervous System - metabolism ; Central Nervous System - physiopathology ; Chemoreceptor Cells - metabolism ; Chemoreceptor Cells - physiology ; Electric Stimulation ; Hyperoxia ; Hyperoxia - metabolism ; Hyperoxia - physiopathology ; Hypoxia - metabolism ; Hypoxia - physiopathology ; Oxygen - metabolism ; Phrenic Nerve - metabolism ; Phrenic Nerve - physiopathology ; Physiology ; Rats ; Rats, Sprague-Dawley ; Respiration ; Respiratory system ; Respiratory System - metabolism ; Respiratory System - physiopathology ; Rodents ; Ventilation</subject><ispartof>Journal of applied physiology (1985), 2014-01, Vol.116 (1), p.47-53</ispartof><rights>Copyright American Physiological Society Jan 1, 2014</rights><rights>Copyright © 2014 the American Physiological Society 2014 American Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-ce0a2ad24836c27c5f030335eb46c131da7ee89a6003ea45c222b99694503ea03</citedby><cites>FETCH-LOGICAL-c478t-ce0a2ad24836c27c5f030335eb46c131da7ee89a6003ea45c222b99694503ea03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24157524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bierman, Alexis M</creatorcontrib><creatorcontrib>Tankersley, Clarke G</creatorcontrib><creatorcontrib>Wilson, Christopher G</creatorcontrib><creatorcontrib>Chavez-Valdez, Raul</creatorcontrib><creatorcontrib>Gauda, Estelle B</creatorcontrib><title>Perinatal hyperoxic exposure reconfigures the central respiratory network contributing to intolerance to anoxia in newborn rat pups</title><title>Journal of applied physiology (1985)</title><addtitle>J Appl Physiol (1985)</addtitle><description>Perinatal exposure to hyperoxia (30-60% O2) alters the respiratory control system via modulation of peripheral arterial chemoreceptor development and function. Furthermore, hyperoxic exposure during the first two postnatal weeks of life can alternatively modulate the different phases of the hypoxic ventilatory response. Given the effects of perinatal hyperoxia, the aims of our study were 1) to determine the effect on survival time in response to lethal anoxic stimuli in rat pups and 2) to characterize the output of the isolated central respiratory network in response to acute hypoxic stimuli. We hypothesized that perinatal hyperoxic exposure would modify the neonatal rat ventilatory response to anoxia by affecting a central component of the respiratory network in addition to the maturation of the carotid body chemoreceptors. We found that animals continuously exposed to 60% oxygen up to age 5 days after parturition (P5) have reduced breathing frequency at baseline and within the first 10 min of a fatal anoxic challenge. Hyperoxic rat pups also have a shortened time to last gasp in response to anoxia that is not associated with lung injury or inflammation. This study is the first to demonstrate that these in vivo findings correlate with reduced phrenic burst frequency from the isolated brainstem ex vivo. Thus hyperoxic exposure reduced the phrenic burst frequency at baseline and in response to ex vivo anoxia. Importantly, our data suggest that perinatal hyperoxia alters ventilation and the response to anoxia at P5 in part by altering the frequency of phrenic bursts generated by the central respiratory network.</description><subject>Animals</subject><subject>Animals, Newborn - physiology</subject><subject>Carotid Body - metabolism</subject><subject>Carotid Body - physiopathology</subject><subject>Central Nervous System - metabolism</subject><subject>Central Nervous System - physiopathology</subject><subject>Chemoreceptor Cells - metabolism</subject><subject>Chemoreceptor Cells - physiology</subject><subject>Electric Stimulation</subject><subject>Hyperoxia</subject><subject>Hyperoxia - metabolism</subject><subject>Hyperoxia - physiopathology</subject><subject>Hypoxia - metabolism</subject><subject>Hypoxia - physiopathology</subject><subject>Oxygen - metabolism</subject><subject>Phrenic Nerve - metabolism</subject><subject>Phrenic Nerve - physiopathology</subject><subject>Physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Respiration</subject><subject>Respiratory system</subject><subject>Respiratory System - metabolism</subject><subject>Respiratory System - physiopathology</subject><subject>Rodents</subject><subject>Ventilation</subject><issn>8750-7587</issn><issn>1522-1601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkktvEzEUhS0EoqHwF8ASGzYT_PbMBglVvKRKsIC15Tg3icPENranbdb8cTw0VIUNK_ve-50jX-sg9IKSJaWSvd7blMa0OxYfxyUhjIklI5Q_QIs2ZR1VhD5Ei15L0mnZ6zP0pJQ9IVQISR-jMyao1JKJBfr5BbIPttoR744JcrzxDsNNimXKgDO4GDZ-2-4F1x1gB6HmxrY6-WxrzEccoF7H_B03tGa_mqoPW1wj9qHGEbINDubShuZtW7cJrlcxB9z0OE2pPEWPNnYs8Ox0nqNv7999vfjYXX7-8Oni7WXnhO5r54BYZtdM9Fw5pp3cEE44l7ASylFO11YD9INVhHCwQjrG2GoY1CDk3CD8HL259U3T6gDr0y4mZX-w-Wii9ebvSfA7s41Xhg-McqWawauTQY4_JijVHHxxMI42QJyKoUoRQXpJ9f9RMRAtaa9pQ1_-g-7jlEP7iUZpJYZB05nSt5TLsZQMm7t3U2LmTJj7mTC_M2HmTDTl8_tr3-n-hID_Aq28upY</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Bierman, Alexis M</creator><creator>Tankersley, Clarke G</creator><creator>Wilson, Christopher G</creator><creator>Chavez-Valdez, Raul</creator><creator>Gauda, Estelle B</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Perinatal hyperoxic exposure reconfigures the central respiratory network contributing to intolerance to anoxia in newborn rat pups</title><author>Bierman, Alexis M ; Tankersley, Clarke G ; Wilson, Christopher G ; Chavez-Valdez, Raul ; Gauda, Estelle B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-ce0a2ad24836c27c5f030335eb46c131da7ee89a6003ea45c222b99694503ea03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Animals, Newborn - physiology</topic><topic>Carotid Body - metabolism</topic><topic>Carotid Body - physiopathology</topic><topic>Central Nervous System - metabolism</topic><topic>Central Nervous System - physiopathology</topic><topic>Chemoreceptor Cells - metabolism</topic><topic>Chemoreceptor Cells - physiology</topic><topic>Electric Stimulation</topic><topic>Hyperoxia</topic><topic>Hyperoxia - metabolism</topic><topic>Hyperoxia - physiopathology</topic><topic>Hypoxia - metabolism</topic><topic>Hypoxia - physiopathology</topic><topic>Oxygen - metabolism</topic><topic>Phrenic Nerve - metabolism</topic><topic>Phrenic Nerve - physiopathology</topic><topic>Physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Respiration</topic><topic>Respiratory system</topic><topic>Respiratory System - metabolism</topic><topic>Respiratory System - physiopathology</topic><topic>Rodents</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bierman, Alexis M</creatorcontrib><creatorcontrib>Tankersley, Clarke G</creatorcontrib><creatorcontrib>Wilson, Christopher G</creatorcontrib><creatorcontrib>Chavez-Valdez, Raul</creatorcontrib><creatorcontrib>Gauda, Estelle B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied physiology (1985)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bierman, Alexis M</au><au>Tankersley, Clarke G</au><au>Wilson, Christopher G</au><au>Chavez-Valdez, Raul</au><au>Gauda, Estelle B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perinatal hyperoxic exposure reconfigures the central respiratory network contributing to intolerance to anoxia in newborn rat pups</atitle><jtitle>Journal of applied physiology (1985)</jtitle><addtitle>J Appl Physiol (1985)</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>116</volume><issue>1</issue><spage>47</spage><epage>53</epage><pages>47-53</pages><issn>8750-7587</issn><eissn>1522-1601</eissn><abstract>Perinatal exposure to hyperoxia (30-60% O2) alters the respiratory control system via modulation of peripheral arterial chemoreceptor development and function. Furthermore, hyperoxic exposure during the first two postnatal weeks of life can alternatively modulate the different phases of the hypoxic ventilatory response. Given the effects of perinatal hyperoxia, the aims of our study were 1) to determine the effect on survival time in response to lethal anoxic stimuli in rat pups and 2) to characterize the output of the isolated central respiratory network in response to acute hypoxic stimuli. We hypothesized that perinatal hyperoxic exposure would modify the neonatal rat ventilatory response to anoxia by affecting a central component of the respiratory network in addition to the maturation of the carotid body chemoreceptors. We found that animals continuously exposed to 60% oxygen up to age 5 days after parturition (P5) have reduced breathing frequency at baseline and within the first 10 min of a fatal anoxic challenge. Hyperoxic rat pups also have a shortened time to last gasp in response to anoxia that is not associated with lung injury or inflammation. This study is the first to demonstrate that these in vivo findings correlate with reduced phrenic burst frequency from the isolated brainstem ex vivo. Thus hyperoxic exposure reduced the phrenic burst frequency at baseline and in response to ex vivo anoxia. Importantly, our data suggest that perinatal hyperoxia alters ventilation and the response to anoxia at P5 in part by altering the frequency of phrenic bursts generated by the central respiratory network.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>24157524</pmid><doi>10.1152/japplphysiol.00224.2013</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 8750-7587
ispartof Journal of applied physiology (1985), 2014-01, Vol.116 (1), p.47-53
issn 8750-7587
1522-1601
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3921366
source American Physiological Society Journals; American Physiological Society:Jisc Collections:American Physiological Society Journals ‘Read Publish & Join’ Agreement:2023-2024 (Reading list)
subjects Animals
Animals, Newborn - physiology
Carotid Body - metabolism
Carotid Body - physiopathology
Central Nervous System - metabolism
Central Nervous System - physiopathology
Chemoreceptor Cells - metabolism
Chemoreceptor Cells - physiology
Electric Stimulation
Hyperoxia
Hyperoxia - metabolism
Hyperoxia - physiopathology
Hypoxia - metabolism
Hypoxia - physiopathology
Oxygen - metabolism
Phrenic Nerve - metabolism
Phrenic Nerve - physiopathology
Physiology
Rats
Rats, Sprague-Dawley
Respiration
Respiratory system
Respiratory System - metabolism
Respiratory System - physiopathology
Rodents
Ventilation
title Perinatal hyperoxic exposure reconfigures the central respiratory network contributing to intolerance to anoxia in newborn rat pups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A31%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perinatal%20hyperoxic%20exposure%20reconfigures%20the%20central%20respiratory%20network%20contributing%20to%20intolerance%20to%20anoxia%20in%20newborn%20rat%20pups&rft.jtitle=Journal%20of%20applied%20physiology%20(1985)&rft.au=Bierman,%20Alexis%20M&rft.date=2014-01-01&rft.volume=116&rft.issue=1&rft.spage=47&rft.epage=53&rft.pages=47-53&rft.issn=8750-7587&rft.eissn=1522-1601&rft_id=info:doi/10.1152/japplphysiol.00224.2013&rft_dat=%3Cproquest_pubme%3E3178464921%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-ce0a2ad24836c27c5f030335eb46c131da7ee89a6003ea45c222b99694503ea03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1476499711&rft_id=info:pmid/24157524&rfr_iscdi=true