Loading…
Perinatal hyperoxic exposure reconfigures the central respiratory network contributing to intolerance to anoxia in newborn rat pups
Perinatal exposure to hyperoxia (30-60% O2) alters the respiratory control system via modulation of peripheral arterial chemoreceptor development and function. Furthermore, hyperoxic exposure during the first two postnatal weeks of life can alternatively modulate the different phases of the hypoxic...
Saved in:
Published in: | Journal of applied physiology (1985) 2014-01, Vol.116 (1), p.47-53 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c478t-ce0a2ad24836c27c5f030335eb46c131da7ee89a6003ea45c222b99694503ea03 |
---|---|
cites | cdi_FETCH-LOGICAL-c478t-ce0a2ad24836c27c5f030335eb46c131da7ee89a6003ea45c222b99694503ea03 |
container_end_page | 53 |
container_issue | 1 |
container_start_page | 47 |
container_title | Journal of applied physiology (1985) |
container_volume | 116 |
creator | Bierman, Alexis M Tankersley, Clarke G Wilson, Christopher G Chavez-Valdez, Raul Gauda, Estelle B |
description | Perinatal exposure to hyperoxia (30-60% O2) alters the respiratory control system via modulation of peripheral arterial chemoreceptor development and function. Furthermore, hyperoxic exposure during the first two postnatal weeks of life can alternatively modulate the different phases of the hypoxic ventilatory response. Given the effects of perinatal hyperoxia, the aims of our study were 1) to determine the effect on survival time in response to lethal anoxic stimuli in rat pups and 2) to characterize the output of the isolated central respiratory network in response to acute hypoxic stimuli. We hypothesized that perinatal hyperoxic exposure would modify the neonatal rat ventilatory response to anoxia by affecting a central component of the respiratory network in addition to the maturation of the carotid body chemoreceptors. We found that animals continuously exposed to 60% oxygen up to age 5 days after parturition (P5) have reduced breathing frequency at baseline and within the first 10 min of a fatal anoxic challenge. Hyperoxic rat pups also have a shortened time to last gasp in response to anoxia that is not associated with lung injury or inflammation. This study is the first to demonstrate that these in vivo findings correlate with reduced phrenic burst frequency from the isolated brainstem ex vivo. Thus hyperoxic exposure reduced the phrenic burst frequency at baseline and in response to ex vivo anoxia. Importantly, our data suggest that perinatal hyperoxia alters ventilation and the response to anoxia at P5 in part by altering the frequency of phrenic bursts generated by the central respiratory network. |
doi_str_mv | 10.1152/japplphysiol.00224.2013 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3921366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3178464921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-ce0a2ad24836c27c5f030335eb46c131da7ee89a6003ea45c222b99694503ea03</originalsourceid><addsrcrecordid>eNqFkktvEzEUhS0EoqHwF8ASGzYT_PbMBglVvKRKsIC15Tg3icPENranbdb8cTw0VIUNK_ve-50jX-sg9IKSJaWSvd7blMa0OxYfxyUhjIklI5Q_QIs2ZR1VhD5Ei15L0mnZ6zP0pJQ9IVQISR-jMyao1JKJBfr5BbIPttoR744JcrzxDsNNimXKgDO4GDZ-2-4F1x1gB6HmxrY6-WxrzEccoF7H_B03tGa_mqoPW1wj9qHGEbINDubShuZtW7cJrlcxB9z0OE2pPEWPNnYs8Ox0nqNv7999vfjYXX7-8Oni7WXnhO5r54BYZtdM9Fw5pp3cEE44l7ASylFO11YD9INVhHCwQjrG2GoY1CDk3CD8HL259U3T6gDr0y4mZX-w-Wii9ebvSfA7s41Xhg-McqWawauTQY4_JijVHHxxMI42QJyKoUoRQXpJ9f9RMRAtaa9pQ1_-g-7jlEP7iUZpJYZB05nSt5TLsZQMm7t3U2LmTJj7mTC_M2HmTDTl8_tr3-n-hID_Aq28upY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1476499711</pqid></control><display><type>article</type><title>Perinatal hyperoxic exposure reconfigures the central respiratory network contributing to intolerance to anoxia in newborn rat pups</title><source>American Physiological Society Journals</source><source>American Physiological Society:Jisc Collections:American Physiological Society Journals ‘Read Publish & Join’ Agreement:2023-2024 (Reading list)</source><creator>Bierman, Alexis M ; Tankersley, Clarke G ; Wilson, Christopher G ; Chavez-Valdez, Raul ; Gauda, Estelle B</creator><creatorcontrib>Bierman, Alexis M ; Tankersley, Clarke G ; Wilson, Christopher G ; Chavez-Valdez, Raul ; Gauda, Estelle B</creatorcontrib><description>Perinatal exposure to hyperoxia (30-60% O2) alters the respiratory control system via modulation of peripheral arterial chemoreceptor development and function. Furthermore, hyperoxic exposure during the first two postnatal weeks of life can alternatively modulate the different phases of the hypoxic ventilatory response. Given the effects of perinatal hyperoxia, the aims of our study were 1) to determine the effect on survival time in response to lethal anoxic stimuli in rat pups and 2) to characterize the output of the isolated central respiratory network in response to acute hypoxic stimuli. We hypothesized that perinatal hyperoxic exposure would modify the neonatal rat ventilatory response to anoxia by affecting a central component of the respiratory network in addition to the maturation of the carotid body chemoreceptors. We found that animals continuously exposed to 60% oxygen up to age 5 days after parturition (P5) have reduced breathing frequency at baseline and within the first 10 min of a fatal anoxic challenge. Hyperoxic rat pups also have a shortened time to last gasp in response to anoxia that is not associated with lung injury or inflammation. This study is the first to demonstrate that these in vivo findings correlate with reduced phrenic burst frequency from the isolated brainstem ex vivo. Thus hyperoxic exposure reduced the phrenic burst frequency at baseline and in response to ex vivo anoxia. Importantly, our data suggest that perinatal hyperoxia alters ventilation and the response to anoxia at P5 in part by altering the frequency of phrenic bursts generated by the central respiratory network.</description><identifier>ISSN: 8750-7587</identifier><identifier>EISSN: 1522-1601</identifier><identifier>DOI: 10.1152/japplphysiol.00224.2013</identifier><identifier>PMID: 24157524</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Animals ; Animals, Newborn - physiology ; Carotid Body - metabolism ; Carotid Body - physiopathology ; Central Nervous System - metabolism ; Central Nervous System - physiopathology ; Chemoreceptor Cells - metabolism ; Chemoreceptor Cells - physiology ; Electric Stimulation ; Hyperoxia ; Hyperoxia - metabolism ; Hyperoxia - physiopathology ; Hypoxia - metabolism ; Hypoxia - physiopathology ; Oxygen - metabolism ; Phrenic Nerve - metabolism ; Phrenic Nerve - physiopathology ; Physiology ; Rats ; Rats, Sprague-Dawley ; Respiration ; Respiratory system ; Respiratory System - metabolism ; Respiratory System - physiopathology ; Rodents ; Ventilation</subject><ispartof>Journal of applied physiology (1985), 2014-01, Vol.116 (1), p.47-53</ispartof><rights>Copyright American Physiological Society Jan 1, 2014</rights><rights>Copyright © 2014 the American Physiological Society 2014 American Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-ce0a2ad24836c27c5f030335eb46c131da7ee89a6003ea45c222b99694503ea03</citedby><cites>FETCH-LOGICAL-c478t-ce0a2ad24836c27c5f030335eb46c131da7ee89a6003ea45c222b99694503ea03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24157524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bierman, Alexis M</creatorcontrib><creatorcontrib>Tankersley, Clarke G</creatorcontrib><creatorcontrib>Wilson, Christopher G</creatorcontrib><creatorcontrib>Chavez-Valdez, Raul</creatorcontrib><creatorcontrib>Gauda, Estelle B</creatorcontrib><title>Perinatal hyperoxic exposure reconfigures the central respiratory network contributing to intolerance to anoxia in newborn rat pups</title><title>Journal of applied physiology (1985)</title><addtitle>J Appl Physiol (1985)</addtitle><description>Perinatal exposure to hyperoxia (30-60% O2) alters the respiratory control system via modulation of peripheral arterial chemoreceptor development and function. Furthermore, hyperoxic exposure during the first two postnatal weeks of life can alternatively modulate the different phases of the hypoxic ventilatory response. Given the effects of perinatal hyperoxia, the aims of our study were 1) to determine the effect on survival time in response to lethal anoxic stimuli in rat pups and 2) to characterize the output of the isolated central respiratory network in response to acute hypoxic stimuli. We hypothesized that perinatal hyperoxic exposure would modify the neonatal rat ventilatory response to anoxia by affecting a central component of the respiratory network in addition to the maturation of the carotid body chemoreceptors. We found that animals continuously exposed to 60% oxygen up to age 5 days after parturition (P5) have reduced breathing frequency at baseline and within the first 10 min of a fatal anoxic challenge. Hyperoxic rat pups also have a shortened time to last gasp in response to anoxia that is not associated with lung injury or inflammation. This study is the first to demonstrate that these in vivo findings correlate with reduced phrenic burst frequency from the isolated brainstem ex vivo. Thus hyperoxic exposure reduced the phrenic burst frequency at baseline and in response to ex vivo anoxia. Importantly, our data suggest that perinatal hyperoxia alters ventilation and the response to anoxia at P5 in part by altering the frequency of phrenic bursts generated by the central respiratory network.</description><subject>Animals</subject><subject>Animals, Newborn - physiology</subject><subject>Carotid Body - metabolism</subject><subject>Carotid Body - physiopathology</subject><subject>Central Nervous System - metabolism</subject><subject>Central Nervous System - physiopathology</subject><subject>Chemoreceptor Cells - metabolism</subject><subject>Chemoreceptor Cells - physiology</subject><subject>Electric Stimulation</subject><subject>Hyperoxia</subject><subject>Hyperoxia - metabolism</subject><subject>Hyperoxia - physiopathology</subject><subject>Hypoxia - metabolism</subject><subject>Hypoxia - physiopathology</subject><subject>Oxygen - metabolism</subject><subject>Phrenic Nerve - metabolism</subject><subject>Phrenic Nerve - physiopathology</subject><subject>Physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Respiration</subject><subject>Respiratory system</subject><subject>Respiratory System - metabolism</subject><subject>Respiratory System - physiopathology</subject><subject>Rodents</subject><subject>Ventilation</subject><issn>8750-7587</issn><issn>1522-1601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkktvEzEUhS0EoqHwF8ASGzYT_PbMBglVvKRKsIC15Tg3icPENranbdb8cTw0VIUNK_ve-50jX-sg9IKSJaWSvd7blMa0OxYfxyUhjIklI5Q_QIs2ZR1VhD5Ei15L0mnZ6zP0pJQ9IVQISR-jMyao1JKJBfr5BbIPttoR744JcrzxDsNNimXKgDO4GDZ-2-4F1x1gB6HmxrY6-WxrzEccoF7H_B03tGa_mqoPW1wj9qHGEbINDubShuZtW7cJrlcxB9z0OE2pPEWPNnYs8Ox0nqNv7999vfjYXX7-8Oni7WXnhO5r54BYZtdM9Fw5pp3cEE44l7ASylFO11YD9INVhHCwQjrG2GoY1CDk3CD8HL259U3T6gDr0y4mZX-w-Wii9ebvSfA7s41Xhg-McqWawauTQY4_JijVHHxxMI42QJyKoUoRQXpJ9f9RMRAtaa9pQ1_-g-7jlEP7iUZpJYZB05nSt5TLsZQMm7t3U2LmTJj7mTC_M2HmTDTl8_tr3-n-hID_Aq28upY</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Bierman, Alexis M</creator><creator>Tankersley, Clarke G</creator><creator>Wilson, Christopher G</creator><creator>Chavez-Valdez, Raul</creator><creator>Gauda, Estelle B</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Perinatal hyperoxic exposure reconfigures the central respiratory network contributing to intolerance to anoxia in newborn rat pups</title><author>Bierman, Alexis M ; Tankersley, Clarke G ; Wilson, Christopher G ; Chavez-Valdez, Raul ; Gauda, Estelle B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-ce0a2ad24836c27c5f030335eb46c131da7ee89a6003ea45c222b99694503ea03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Animals, Newborn - physiology</topic><topic>Carotid Body - metabolism</topic><topic>Carotid Body - physiopathology</topic><topic>Central Nervous System - metabolism</topic><topic>Central Nervous System - physiopathology</topic><topic>Chemoreceptor Cells - metabolism</topic><topic>Chemoreceptor Cells - physiology</topic><topic>Electric Stimulation</topic><topic>Hyperoxia</topic><topic>Hyperoxia - metabolism</topic><topic>Hyperoxia - physiopathology</topic><topic>Hypoxia - metabolism</topic><topic>Hypoxia - physiopathology</topic><topic>Oxygen - metabolism</topic><topic>Phrenic Nerve - metabolism</topic><topic>Phrenic Nerve - physiopathology</topic><topic>Physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Respiration</topic><topic>Respiratory system</topic><topic>Respiratory System - metabolism</topic><topic>Respiratory System - physiopathology</topic><topic>Rodents</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bierman, Alexis M</creatorcontrib><creatorcontrib>Tankersley, Clarke G</creatorcontrib><creatorcontrib>Wilson, Christopher G</creatorcontrib><creatorcontrib>Chavez-Valdez, Raul</creatorcontrib><creatorcontrib>Gauda, Estelle B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied physiology (1985)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bierman, Alexis M</au><au>Tankersley, Clarke G</au><au>Wilson, Christopher G</au><au>Chavez-Valdez, Raul</au><au>Gauda, Estelle B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perinatal hyperoxic exposure reconfigures the central respiratory network contributing to intolerance to anoxia in newborn rat pups</atitle><jtitle>Journal of applied physiology (1985)</jtitle><addtitle>J Appl Physiol (1985)</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>116</volume><issue>1</issue><spage>47</spage><epage>53</epage><pages>47-53</pages><issn>8750-7587</issn><eissn>1522-1601</eissn><abstract>Perinatal exposure to hyperoxia (30-60% O2) alters the respiratory control system via modulation of peripheral arterial chemoreceptor development and function. Furthermore, hyperoxic exposure during the first two postnatal weeks of life can alternatively modulate the different phases of the hypoxic ventilatory response. Given the effects of perinatal hyperoxia, the aims of our study were 1) to determine the effect on survival time in response to lethal anoxic stimuli in rat pups and 2) to characterize the output of the isolated central respiratory network in response to acute hypoxic stimuli. We hypothesized that perinatal hyperoxic exposure would modify the neonatal rat ventilatory response to anoxia by affecting a central component of the respiratory network in addition to the maturation of the carotid body chemoreceptors. We found that animals continuously exposed to 60% oxygen up to age 5 days after parturition (P5) have reduced breathing frequency at baseline and within the first 10 min of a fatal anoxic challenge. Hyperoxic rat pups also have a shortened time to last gasp in response to anoxia that is not associated with lung injury or inflammation. This study is the first to demonstrate that these in vivo findings correlate with reduced phrenic burst frequency from the isolated brainstem ex vivo. Thus hyperoxic exposure reduced the phrenic burst frequency at baseline and in response to ex vivo anoxia. Importantly, our data suggest that perinatal hyperoxia alters ventilation and the response to anoxia at P5 in part by altering the frequency of phrenic bursts generated by the central respiratory network.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>24157524</pmid><doi>10.1152/japplphysiol.00224.2013</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8750-7587 |
ispartof | Journal of applied physiology (1985), 2014-01, Vol.116 (1), p.47-53 |
issn | 8750-7587 1522-1601 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3921366 |
source | American Physiological Society Journals; American Physiological Society:Jisc Collections:American Physiological Society Journals ‘Read Publish & Join’ Agreement:2023-2024 (Reading list) |
subjects | Animals Animals, Newborn - physiology Carotid Body - metabolism Carotid Body - physiopathology Central Nervous System - metabolism Central Nervous System - physiopathology Chemoreceptor Cells - metabolism Chemoreceptor Cells - physiology Electric Stimulation Hyperoxia Hyperoxia - metabolism Hyperoxia - physiopathology Hypoxia - metabolism Hypoxia - physiopathology Oxygen - metabolism Phrenic Nerve - metabolism Phrenic Nerve - physiopathology Physiology Rats Rats, Sprague-Dawley Respiration Respiratory system Respiratory System - metabolism Respiratory System - physiopathology Rodents Ventilation |
title | Perinatal hyperoxic exposure reconfigures the central respiratory network contributing to intolerance to anoxia in newborn rat pups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A31%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perinatal%20hyperoxic%20exposure%20reconfigures%20the%20central%20respiratory%20network%20contributing%20to%20intolerance%20to%20anoxia%20in%20newborn%20rat%20pups&rft.jtitle=Journal%20of%20applied%20physiology%20(1985)&rft.au=Bierman,%20Alexis%20M&rft.date=2014-01-01&rft.volume=116&rft.issue=1&rft.spage=47&rft.epage=53&rft.pages=47-53&rft.issn=8750-7587&rft.eissn=1522-1601&rft_id=info:doi/10.1152/japplphysiol.00224.2013&rft_dat=%3Cproquest_pubme%3E3178464921%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-ce0a2ad24836c27c5f030335eb46c131da7ee89a6003ea45c222b99694503ea03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1476499711&rft_id=info:pmid/24157524&rfr_iscdi=true |