Loading…

Low Molecular Weight Hyaluronan Activates Cytosolic Phospholipase A2α and Eicosanoid Production in Monocytes and Macrophages

Hyaluronan (HA) is the major glycosaminoglycan in the extracellular matrix. During inflammation, there is an increased breakdown of HA, resulting in the accumulation of low molecular weight (LMW) HA and activation of monocytes and macrophages. Eicosanoids, derived from the cytosolic phospholipase A2...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2014-02, Vol.289 (7), p.4470-4488
Main Authors: Sokolowska, Milena, Chen, Li-Yuan, Eberlein, Michael, Martinez-Anton, Asuncion, Liu, Yueqin, Alsaaty, Sara, Qi, Hai-Yan, Logun, Carolea, Horton, Maureen, Shelhamer, James H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyaluronan (HA) is the major glycosaminoglycan in the extracellular matrix. During inflammation, there is an increased breakdown of HA, resulting in the accumulation of low molecular weight (LMW) HA and activation of monocytes and macrophages. Eicosanoids, derived from the cytosolic phospholipase A2 group IVA (cPLA2α) activation, are potent lipid mediators also attributed to acute and chronic inflammation. The aim of this study was to determine the effect of LMW HA on cPLA2α activation, arachidonic acid (AA) release, and subsequent eicosanoid production and to examine the receptors and downstream mechanisms involved in these processes in monocytes and differently polarized macrophages. LMW HA was a potent stimulant of AA release in a time- and dose-dependent manner, induced cPLA2α, ERK1/2, p38, and JNK phosphorylation, as well as activated COX2 expression and prostaglandin (PG) E2 production in primary human monocytes, murine RAW 264.7, and wild-type bone marrow-derived macrophages. Specific cPLA2α inhibitor blocked HA-induced AA release and PGE2 production in all of these cells. Using CD44, TLR4, TLR2, MYD88, RHAMM or STAB2 siRNA-transfected macrophages and monocytes, we found that AA release, cPLA2α, ERK1/2, p38, and JNK phosphorylation, COX2 expression, and PGE2 production were activated by LMW HA through a TLR4/MYD88 pathway. Likewise, PGE2 production and COX2 expression were blocked in Tlr4−/− and Myd88−/− mice, but not in Cd44−/− mice, after LMW HA stimulation. Moreover, we demonstrated that LMW HA activated the M1 macrophage phenotype with the unique cPLA2α/COX2high and COX1/ALOX15/ALOX5/LTA4Hlow gene and PGE2/PGD2/15-HETEhigh and LXA4low eicosanoid profile. These findings reveal a novel link between HA-mediated inflammation and lipid metabolism. Fragmented hyaluronan (a major extracellular matrix component) and eicosanoids (potent lipid mediators) are associated with chronic inflammatory diseases and cancer. Fragmented hyaluronan stimulates lipid mediator production in human monocytes and macrophages and influences macrophage differentiation toward a distinct activation pattern. These findings reveal a novel link between hyaluronan-mediated inflammation and lipid metabolism. This link may provide new targets for disease therapeutics.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M113.515106