Loading…
All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer
Quantum fluids based on light is a highly developing research field, since they provide a nonlinear platform for developing optical functionalities and quantum simulators. An important issue in this context is the ability to coherently control the properties of the fluid. Here we propose an all-opti...
Saved in:
Published in: | Nature communications 2014-02, Vol.5 (1), p.3278, Article 3278 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantum fluids based on light is a highly developing research field, since they provide a nonlinear platform for developing optical functionalities and quantum simulators. An important issue in this context is the ability to coherently control the properties of the fluid. Here we propose an all-optical approach for controlling the phase of a flow of cavity-polaritons, making use of their strong interactions with localized excitons. Here we illustrate the potential of this method by implementing a compact exciton–polariton interferometer, which output intensity and polarization can be optically controlled. This interferometer is cascadable with already reported polariton devices and is promising for future polaritonic quantum optic experiments. Complex phase patterns could be also engineered using this optical method, providing a key tool to build photonic artificial gauge fields.
Quantum fluids such as cavity-polaritons show nonlinear optical properties of interest in applications such as quantum optics. Here, Sturm and colleagues demonstrate an optical control of the phase of a polariton flow, and make use of this to realize a compact exciton–polariton interferometer. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms4278 |