Loading…

A multicenter evaluation of oral pressure therapy for the treatment of obstructive sleep apnea

Abstract Objective We aimed to evaluate the impact of a novel noninvasive oral pressure therapy (OPT) (Winx®, ApniCure) system on polysomnographic measures of sleep-disordered breathing, sleep architecture, and sleep stability in obstructive sleep apnea (OSA). Subjects and methods A 4-week, multicen...

Full description

Saved in:
Bibliographic Details
Published in:Sleep medicine 2013-09, Vol.14 (9), p.830-837
Main Authors: Colrain, Ian M, Black, Jed, Siegel, Lawrence C, Bogan, Richard K, Becker, Philip M, Farid-Moayer, Mehran, Goldberg, Rochelle, Lankford, D. Alan, Goldberg, Andrew N, Malhotra, Atul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Objective We aimed to evaluate the impact of a novel noninvasive oral pressure therapy (OPT) (Winx®, ApniCure) system on polysomnographic measures of sleep-disordered breathing, sleep architecture, and sleep stability in obstructive sleep apnea (OSA). Subjects and methods A 4-week, multicenter, prospective, open-label, randomized, crossover, first-night order of control vs treatment, single-arm trial was conducted in five American Academy of Sleep Medicine (AASM) – accredited sleep clinics and one research laboratory. Sixty-three subjects (analysis cohort) were studied from a screening cohort of 367 subjects. The analysis cohort was 69.8% men, ages 53.6 ± 8.9 years (mean ± SD), body mass index of 32.3 ± 4.5 kg/m2 , with mild to severe OSA. At treatment initiation, subjects received random assignment to one night with and one without (control) treatment, and they were assessed again following 28 nights of treatment. Breathing and sleep architecture were assessed each night based on blind scoring by a single centralized scorer using AASM criteria. Results Average nightly usage across the take-home period was 6.0 ± 1.4 h. There were no severe or serious device-related adverse events (AEs). Median apnea–hypopnea index (AHI) was 27.5 events per hour on the control night, 13.4 events per hour on the first treatment night, and 14.8 events per hour after 28 days of treatment. A clinically significant response (treatment AHI ⩽10/h and ⩽50% of control values) was seen in 20 of the 63 subjects evaluated. Rapid eye movement percentage (REM%) was significantly increased, and N1%, stage shifts to N1 sleep, overall stage shifts, total awakenings, and arousals per hour were all significantly reduced at both treatment nights compared to controls. Mean Epworth sleepiness scale (ESS) was significantly reduced from 12.1 to 8.6 (Cohen d effect size, 0.68) in those untreated for two or more weeks prior to OPT study participation and remained unchanged in subjects who directly switched from continuous positive airway pressure (CPAP) therapy to OPT. Conclusion Clinically significant improvements in sleep quality and continuity, AHI, ODI, ESS, and overall clinical status were achieved in an easily identified subgroup. OPT was safe and well-tolerated and nightly usage was high.
ISSN:1389-9457
1878-5506
DOI:10.1016/j.sleep.2013.05.009