Loading…

Design of inhibitors of the HIV-1 integrase core domain using virtual screening

Acquired immunodeficiency syndrome (AIDS) is a disease of the human immune system caused by the human immunodeficiency virus (HIV). The integrase (IN) enzyme of HIV interacts with several cellular and viral proteins during the integration process. Thus, it represents an appropriate target for antire...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformation 2014-01, Vol.10 (2), p.76-80
Main Authors: Regon, Preetom, Gogoi, Dhrubajyoti, Rai, Ashok Kumar, Bordoloi, Manabjyoti, Bezbaruah, Rajib Lochan
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Acquired immunodeficiency syndrome (AIDS) is a disease of the human immune system caused by the human immunodeficiency virus (HIV). The integrase (IN) enzyme of HIV interacts with several cellular and viral proteins during the integration process. Thus, it represents an appropriate target for antiretroviral drugs (ARVs). We performed virtual screening of database compounds and designed analogues using Elvitegravir (EVG) as a standard compound. The 378 screened compounds were retrieved from ZINC, ChemSpider, PubChem, and ChemBank Chemical Databases based on chemical similarity and literature searches related to the structure of EVG. The Physiochemical properties, Bioactivity, Toxicity and Absorption, Distribution, Metabolism and Excretion of Molecules (ADME) of these compounds were predicted and docking Experiments were conducted using Molegro Virtual Docker software. The docking and ADME suggested very significant results in regard to EVG. The MolDock and Rerank scores were used to analyze the results. The compounds ZINC26507991 (-84.22), Analogue 9 (-68.49), ZINC20731658 (-66.79), ZINC00210363 (-43.44) showed better binding orientation with IN receptor model with respect to EVG (182.52). The ZINC26507991 has showed significant ADME result.
ISSN:0973-2063
0973-8894
0973-2063
0973-8894
DOI:10.6026/97320630010076