Loading…

A Nucleotide-dependent and HRDC Domain-dependent Structural Transition in DNA-bound RecQ Helicase

The allosteric communication between the ATP- and DNA-binding sites of RecQ helicases enables efficient coupling of ATP hydrolysis to translocation along single-stranded DNA (ssDNA) and, in turn, the restructuring of multistranded DNA substrates during genome maintenance processes. In this study, we...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2014-02, Vol.289 (9), p.5938-5949
Main Authors: Kocsis, Zsuzsa S., Sarlós, Kata, Harami, Gábor M., Martina, Máté, Kovács, Mihály
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-98a2df40529f79bd18f147497175ad7bbb7fbbaff4e879a4f13506dc841a97983
cites cdi_FETCH-LOGICAL-c443t-98a2df40529f79bd18f147497175ad7bbb7fbbaff4e879a4f13506dc841a97983
container_end_page 5949
container_issue 9
container_start_page 5938
container_title The Journal of biological chemistry
container_volume 289
creator Kocsis, Zsuzsa S.
Sarlós, Kata
Harami, Gábor M.
Martina, Máté
Kovács, Mihály
description The allosteric communication between the ATP- and DNA-binding sites of RecQ helicases enables efficient coupling of ATP hydrolysis to translocation along single-stranded DNA (ssDNA) and, in turn, the restructuring of multistranded DNA substrates during genome maintenance processes. In this study, we used the tryptophan fluorescence signal of Escherichia coli RecQ helicase to decipher the kinetic mechanism of the interaction of the enzyme with ssDNA. Rapid kinetic experiments revealed that ssDNA binding occurs in a two-step mechanism in which the initial binding step is followed by a structural transition of the DNA-bound helicase. We found that the nucleotide state of RecQ greatly influences the kinetics of the detected structural transition, which leads to a high affinity DNA-clamped state in the presence of the nucleotide analog ADP-AlF4. The DNA binding mechanism is largely independent of ssDNA length, indicating the independent binding of RecQ molecules to ssDNA and the lack of significant DNA end effects. The structural transition of DNA-bound RecQ was not detected when the ssDNA binding capability of the helicase-RNase D C-terminal domain was abolished or the domain was deleted. The results shed light on the nature of conformational changes leading to processive ssDNA translocation and multistranded DNA processing by RecQ helicases. The mechanistic role of DNA-induced structural changes in RecQ helicases is largely unexplored. DNA interaction of RecQ helicase depends on the nucleotide state of the enzyme and the presence of an intact HRDC domain. We identified a structural transition of the RecQ-DNA complex that is linked to the mechanoenzymatic cycle. This transition contributes to translocation along DNA and genome-maintaining activities.
doi_str_mv 10.1074/jbc.M113.530741
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3937662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820440566</els_id><sourcerecordid>1504166928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-98a2df40529f79bd18f147497175ad7bbb7fbbaff4e879a4f13506dc841a97983</originalsourceid><addsrcrecordid>eNp1kc1PGzEQxS1EBYFy5lbtkcsGe-1dry9IUdKSSpSqlEq9Wf4YF6ONHexdpP73dRSK6KFzsUbz5s2TfwidEzwnmLPLR23mXwih85aWlhygGcE9rWlLfh6iGcYNqUXT9sfoJOdHXIoJcoSOG8YwxZ2YIbWobiczQBy9hdrCFoKFMFYq2Gp9t1pWq7hRPryZfB_TZMYpqaG6TypkP_oYKh-q1e2i1nEqi3dgvlVrGLxRGd6jd04NGc5e3lP049PH--W6vvl6_Xm5uKkNY3SsRa8a6xhuG-G40Jb0jjDOBCe8VZZrrbnTWjnHoOdCMUdoiztrekaU4KKnp-hq77ud9AasKVlLRrlNfqPSbxmVl_9Ogn-Qv-KzpILyrmuKwcWLQYpPE-RRbnw2MAwqQJyyJC1mpOtEs7t1uZeaFHNO4F7PECx3YGQBI3dg5B5M2fjwNt2r_i-JIhB7AZQ_evaQZDYeggHrE5hR2uj_a_4HvkGdlw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504166928</pqid></control><display><type>article</type><title>A Nucleotide-dependent and HRDC Domain-dependent Structural Transition in DNA-bound RecQ Helicase</title><source>Open Access: PubMed Central</source><source>ScienceDirect Journals</source><creator>Kocsis, Zsuzsa S. ; Sarlós, Kata ; Harami, Gábor M. ; Martina, Máté ; Kovács, Mihály</creator><creatorcontrib>Kocsis, Zsuzsa S. ; Sarlós, Kata ; Harami, Gábor M. ; Martina, Máté ; Kovács, Mihály</creatorcontrib><description>The allosteric communication between the ATP- and DNA-binding sites of RecQ helicases enables efficient coupling of ATP hydrolysis to translocation along single-stranded DNA (ssDNA) and, in turn, the restructuring of multistranded DNA substrates during genome maintenance processes. In this study, we used the tryptophan fluorescence signal of Escherichia coli RecQ helicase to decipher the kinetic mechanism of the interaction of the enzyme with ssDNA. Rapid kinetic experiments revealed that ssDNA binding occurs in a two-step mechanism in which the initial binding step is followed by a structural transition of the DNA-bound helicase. We found that the nucleotide state of RecQ greatly influences the kinetics of the detected structural transition, which leads to a high affinity DNA-clamped state in the presence of the nucleotide analog ADP-AlF4. The DNA binding mechanism is largely independent of ssDNA length, indicating the independent binding of RecQ molecules to ssDNA and the lack of significant DNA end effects. The structural transition of DNA-bound RecQ was not detected when the ssDNA binding capability of the helicase-RNase D C-terminal domain was abolished or the domain was deleted. The results shed light on the nature of conformational changes leading to processive ssDNA translocation and multistranded DNA processing by RecQ helicases. The mechanistic role of DNA-induced structural changes in RecQ helicases is largely unexplored. DNA interaction of RecQ helicase depends on the nucleotide state of the enzyme and the presence of an intact HRDC domain. We identified a structural transition of the RecQ-DNA complex that is linked to the mechanoenzymatic cycle. This transition contributes to translocation along DNA and genome-maintaining activities.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M113.530741</identifier><identifier>PMID: 24403069</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Diphosphate - analogs &amp; derivatives ; Adenosine Diphosphate - chemistry ; ATPases ; DNA and Chromosomes ; DNA Repair ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; DNA, Bacterial - metabolism ; DNA, Single-Stranded - chemistry ; DNA, Single-Stranded - genetics ; DNA, Single-Stranded - metabolism ; DNA-Protein Interaction ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Kinetics ; Molecular Motors ; Organometallic Compounds - chemistry ; Protein Conformation ; Protein Structure, Tertiary ; Recombination ; RecQ Helicases - chemistry ; RecQ Helicases - genetics ; RecQ Helicases - metabolism ; Ribonuclease III - chemistry ; Structure</subject><ispartof>The Journal of biological chemistry, 2014-02, Vol.289 (9), p.5938-5949</ispartof><rights>2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-98a2df40529f79bd18f147497175ad7bbb7fbbaff4e879a4f13506dc841a97983</citedby><cites>FETCH-LOGICAL-c443t-98a2df40529f79bd18f147497175ad7bbb7fbbaff4e879a4f13506dc841a97983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937662/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820440566$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24403069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kocsis, Zsuzsa S.</creatorcontrib><creatorcontrib>Sarlós, Kata</creatorcontrib><creatorcontrib>Harami, Gábor M.</creatorcontrib><creatorcontrib>Martina, Máté</creatorcontrib><creatorcontrib>Kovács, Mihály</creatorcontrib><title>A Nucleotide-dependent and HRDC Domain-dependent Structural Transition in DNA-bound RecQ Helicase</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The allosteric communication between the ATP- and DNA-binding sites of RecQ helicases enables efficient coupling of ATP hydrolysis to translocation along single-stranded DNA (ssDNA) and, in turn, the restructuring of multistranded DNA substrates during genome maintenance processes. In this study, we used the tryptophan fluorescence signal of Escherichia coli RecQ helicase to decipher the kinetic mechanism of the interaction of the enzyme with ssDNA. Rapid kinetic experiments revealed that ssDNA binding occurs in a two-step mechanism in which the initial binding step is followed by a structural transition of the DNA-bound helicase. We found that the nucleotide state of RecQ greatly influences the kinetics of the detected structural transition, which leads to a high affinity DNA-clamped state in the presence of the nucleotide analog ADP-AlF4. The DNA binding mechanism is largely independent of ssDNA length, indicating the independent binding of RecQ molecules to ssDNA and the lack of significant DNA end effects. The structural transition of DNA-bound RecQ was not detected when the ssDNA binding capability of the helicase-RNase D C-terminal domain was abolished or the domain was deleted. The results shed light on the nature of conformational changes leading to processive ssDNA translocation and multistranded DNA processing by RecQ helicases. The mechanistic role of DNA-induced structural changes in RecQ helicases is largely unexplored. DNA interaction of RecQ helicase depends on the nucleotide state of the enzyme and the presence of an intact HRDC domain. We identified a structural transition of the RecQ-DNA complex that is linked to the mechanoenzymatic cycle. This transition contributes to translocation along DNA and genome-maintaining activities.</description><subject>Adenosine Diphosphate - analogs &amp; derivatives</subject><subject>Adenosine Diphosphate - chemistry</subject><subject>ATPases</subject><subject>DNA and Chromosomes</subject><subject>DNA Repair</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>DNA, Single-Stranded - genetics</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>DNA-Protein Interaction</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Kinetics</subject><subject>Molecular Motors</subject><subject>Organometallic Compounds - chemistry</subject><subject>Protein Conformation</subject><subject>Protein Structure, Tertiary</subject><subject>Recombination</subject><subject>RecQ Helicases - chemistry</subject><subject>RecQ Helicases - genetics</subject><subject>RecQ Helicases - metabolism</subject><subject>Ribonuclease III - chemistry</subject><subject>Structure</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kc1PGzEQxS1EBYFy5lbtkcsGe-1dry9IUdKSSpSqlEq9Wf4YF6ONHexdpP73dRSK6KFzsUbz5s2TfwidEzwnmLPLR23mXwih85aWlhygGcE9rWlLfh6iGcYNqUXT9sfoJOdHXIoJcoSOG8YwxZ2YIbWobiczQBy9hdrCFoKFMFYq2Gp9t1pWq7hRPryZfB_TZMYpqaG6TypkP_oYKh-q1e2i1nEqi3dgvlVrGLxRGd6jd04NGc5e3lP049PH--W6vvl6_Xm5uKkNY3SsRa8a6xhuG-G40Jb0jjDOBCe8VZZrrbnTWjnHoOdCMUdoiztrekaU4KKnp-hq77ud9AasKVlLRrlNfqPSbxmVl_9Ogn-Qv-KzpILyrmuKwcWLQYpPE-RRbnw2MAwqQJyyJC1mpOtEs7t1uZeaFHNO4F7PECx3YGQBI3dg5B5M2fjwNt2r_i-JIhB7AZQ_evaQZDYeggHrE5hR2uj_a_4HvkGdlw</recordid><startdate>20140228</startdate><enddate>20140228</enddate><creator>Kocsis, Zsuzsa S.</creator><creator>Sarlós, Kata</creator><creator>Harami, Gábor M.</creator><creator>Martina, Máté</creator><creator>Kovács, Mihály</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140228</creationdate><title>A Nucleotide-dependent and HRDC Domain-dependent Structural Transition in DNA-bound RecQ Helicase</title><author>Kocsis, Zsuzsa S. ; Sarlós, Kata ; Harami, Gábor M. ; Martina, Máté ; Kovács, Mihály</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-98a2df40529f79bd18f147497175ad7bbb7fbbaff4e879a4f13506dc841a97983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adenosine Diphosphate - analogs &amp; derivatives</topic><topic>Adenosine Diphosphate - chemistry</topic><topic>ATPases</topic><topic>DNA and Chromosomes</topic><topic>DNA Repair</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>DNA, Single-Stranded - genetics</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>DNA-Protein Interaction</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Kinetics</topic><topic>Molecular Motors</topic><topic>Organometallic Compounds - chemistry</topic><topic>Protein Conformation</topic><topic>Protein Structure, Tertiary</topic><topic>Recombination</topic><topic>RecQ Helicases - chemistry</topic><topic>RecQ Helicases - genetics</topic><topic>RecQ Helicases - metabolism</topic><topic>Ribonuclease III - chemistry</topic><topic>Structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kocsis, Zsuzsa S.</creatorcontrib><creatorcontrib>Sarlós, Kata</creatorcontrib><creatorcontrib>Harami, Gábor M.</creatorcontrib><creatorcontrib>Martina, Máté</creatorcontrib><creatorcontrib>Kovács, Mihály</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kocsis, Zsuzsa S.</au><au>Sarlós, Kata</au><au>Harami, Gábor M.</au><au>Martina, Máté</au><au>Kovács, Mihály</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Nucleotide-dependent and HRDC Domain-dependent Structural Transition in DNA-bound RecQ Helicase</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2014-02-28</date><risdate>2014</risdate><volume>289</volume><issue>9</issue><spage>5938</spage><epage>5949</epage><pages>5938-5949</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The allosteric communication between the ATP- and DNA-binding sites of RecQ helicases enables efficient coupling of ATP hydrolysis to translocation along single-stranded DNA (ssDNA) and, in turn, the restructuring of multistranded DNA substrates during genome maintenance processes. In this study, we used the tryptophan fluorescence signal of Escherichia coli RecQ helicase to decipher the kinetic mechanism of the interaction of the enzyme with ssDNA. Rapid kinetic experiments revealed that ssDNA binding occurs in a two-step mechanism in which the initial binding step is followed by a structural transition of the DNA-bound helicase. We found that the nucleotide state of RecQ greatly influences the kinetics of the detected structural transition, which leads to a high affinity DNA-clamped state in the presence of the nucleotide analog ADP-AlF4. The DNA binding mechanism is largely independent of ssDNA length, indicating the independent binding of RecQ molecules to ssDNA and the lack of significant DNA end effects. The structural transition of DNA-bound RecQ was not detected when the ssDNA binding capability of the helicase-RNase D C-terminal domain was abolished or the domain was deleted. The results shed light on the nature of conformational changes leading to processive ssDNA translocation and multistranded DNA processing by RecQ helicases. The mechanistic role of DNA-induced structural changes in RecQ helicases is largely unexplored. DNA interaction of RecQ helicase depends on the nucleotide state of the enzyme and the presence of an intact HRDC domain. We identified a structural transition of the RecQ-DNA complex that is linked to the mechanoenzymatic cycle. This transition contributes to translocation along DNA and genome-maintaining activities.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24403069</pmid><doi>10.1074/jbc.M113.530741</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2014-02, Vol.289 (9), p.5938-5949
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3937662
source Open Access: PubMed Central; ScienceDirect Journals
subjects Adenosine Diphosphate - analogs & derivatives
Adenosine Diphosphate - chemistry
ATPases
DNA and Chromosomes
DNA Repair
DNA, Bacterial - chemistry
DNA, Bacterial - genetics
DNA, Bacterial - metabolism
DNA, Single-Stranded - chemistry
DNA, Single-Stranded - genetics
DNA, Single-Stranded - metabolism
DNA-Protein Interaction
Escherichia coli - enzymology
Escherichia coli - genetics
Kinetics
Molecular Motors
Organometallic Compounds - chemistry
Protein Conformation
Protein Structure, Tertiary
Recombination
RecQ Helicases - chemistry
RecQ Helicases - genetics
RecQ Helicases - metabolism
Ribonuclease III - chemistry
Structure
title A Nucleotide-dependent and HRDC Domain-dependent Structural Transition in DNA-bound RecQ Helicase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Nucleotide-dependent%20and%20HRDC%20Domain-dependent%20Structural%20Transition%20in%20DNA-bound%20RecQ%20Helicase&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kocsis,%20Zsuzsa%20S.&rft.date=2014-02-28&rft.volume=289&rft.issue=9&rft.spage=5938&rft.epage=5949&rft.pages=5938-5949&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M113.530741&rft_dat=%3Cproquest_pubme%3E1504166928%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-98a2df40529f79bd18f147497175ad7bbb7fbbaff4e879a4f13506dc841a97983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1504166928&rft_id=info:pmid/24403069&rfr_iscdi=true