Loading…
A Nucleotide-dependent and HRDC Domain-dependent Structural Transition in DNA-bound RecQ Helicase
The allosteric communication between the ATP- and DNA-binding sites of RecQ helicases enables efficient coupling of ATP hydrolysis to translocation along single-stranded DNA (ssDNA) and, in turn, the restructuring of multistranded DNA substrates during genome maintenance processes. In this study, we...
Saved in:
Published in: | The Journal of biological chemistry 2014-02, Vol.289 (9), p.5938-5949 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-98a2df40529f79bd18f147497175ad7bbb7fbbaff4e879a4f13506dc841a97983 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-98a2df40529f79bd18f147497175ad7bbb7fbbaff4e879a4f13506dc841a97983 |
container_end_page | 5949 |
container_issue | 9 |
container_start_page | 5938 |
container_title | The Journal of biological chemistry |
container_volume | 289 |
creator | Kocsis, Zsuzsa S. Sarlós, Kata Harami, Gábor M. Martina, Máté Kovács, Mihály |
description | The allosteric communication between the ATP- and DNA-binding sites of RecQ helicases enables efficient coupling of ATP hydrolysis to translocation along single-stranded DNA (ssDNA) and, in turn, the restructuring of multistranded DNA substrates during genome maintenance processes. In this study, we used the tryptophan fluorescence signal of Escherichia coli RecQ helicase to decipher the kinetic mechanism of the interaction of the enzyme with ssDNA. Rapid kinetic experiments revealed that ssDNA binding occurs in a two-step mechanism in which the initial binding step is followed by a structural transition of the DNA-bound helicase. We found that the nucleotide state of RecQ greatly influences the kinetics of the detected structural transition, which leads to a high affinity DNA-clamped state in the presence of the nucleotide analog ADP-AlF4. The DNA binding mechanism is largely independent of ssDNA length, indicating the independent binding of RecQ molecules to ssDNA and the lack of significant DNA end effects. The structural transition of DNA-bound RecQ was not detected when the ssDNA binding capability of the helicase-RNase D C-terminal domain was abolished or the domain was deleted. The results shed light on the nature of conformational changes leading to processive ssDNA translocation and multistranded DNA processing by RecQ helicases.
The mechanistic role of DNA-induced structural changes in RecQ helicases is largely unexplored.
DNA interaction of RecQ helicase depends on the nucleotide state of the enzyme and the presence of an intact HRDC domain.
We identified a structural transition of the RecQ-DNA complex that is linked to the mechanoenzymatic cycle.
This transition contributes to translocation along DNA and genome-maintaining activities. |
doi_str_mv | 10.1074/jbc.M113.530741 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3937662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820440566</els_id><sourcerecordid>1504166928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-98a2df40529f79bd18f147497175ad7bbb7fbbaff4e879a4f13506dc841a97983</originalsourceid><addsrcrecordid>eNp1kc1PGzEQxS1EBYFy5lbtkcsGe-1dry9IUdKSSpSqlEq9Wf4YF6ONHexdpP73dRSK6KFzsUbz5s2TfwidEzwnmLPLR23mXwih85aWlhygGcE9rWlLfh6iGcYNqUXT9sfoJOdHXIoJcoSOG8YwxZ2YIbWobiczQBy9hdrCFoKFMFYq2Gp9t1pWq7hRPryZfB_TZMYpqaG6TypkP_oYKh-q1e2i1nEqi3dgvlVrGLxRGd6jd04NGc5e3lP049PH--W6vvl6_Xm5uKkNY3SsRa8a6xhuG-G40Jb0jjDOBCe8VZZrrbnTWjnHoOdCMUdoiztrekaU4KKnp-hq77ud9AasKVlLRrlNfqPSbxmVl_9Ogn-Qv-KzpILyrmuKwcWLQYpPE-RRbnw2MAwqQJyyJC1mpOtEs7t1uZeaFHNO4F7PECx3YGQBI3dg5B5M2fjwNt2r_i-JIhB7AZQ_evaQZDYeggHrE5hR2uj_a_4HvkGdlw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504166928</pqid></control><display><type>article</type><title>A Nucleotide-dependent and HRDC Domain-dependent Structural Transition in DNA-bound RecQ Helicase</title><source>Open Access: PubMed Central</source><source>ScienceDirect Journals</source><creator>Kocsis, Zsuzsa S. ; Sarlós, Kata ; Harami, Gábor M. ; Martina, Máté ; Kovács, Mihály</creator><creatorcontrib>Kocsis, Zsuzsa S. ; Sarlós, Kata ; Harami, Gábor M. ; Martina, Máté ; Kovács, Mihály</creatorcontrib><description>The allosteric communication between the ATP- and DNA-binding sites of RecQ helicases enables efficient coupling of ATP hydrolysis to translocation along single-stranded DNA (ssDNA) and, in turn, the restructuring of multistranded DNA substrates during genome maintenance processes. In this study, we used the tryptophan fluorescence signal of Escherichia coli RecQ helicase to decipher the kinetic mechanism of the interaction of the enzyme with ssDNA. Rapid kinetic experiments revealed that ssDNA binding occurs in a two-step mechanism in which the initial binding step is followed by a structural transition of the DNA-bound helicase. We found that the nucleotide state of RecQ greatly influences the kinetics of the detected structural transition, which leads to a high affinity DNA-clamped state in the presence of the nucleotide analog ADP-AlF4. The DNA binding mechanism is largely independent of ssDNA length, indicating the independent binding of RecQ molecules to ssDNA and the lack of significant DNA end effects. The structural transition of DNA-bound RecQ was not detected when the ssDNA binding capability of the helicase-RNase D C-terminal domain was abolished or the domain was deleted. The results shed light on the nature of conformational changes leading to processive ssDNA translocation and multistranded DNA processing by RecQ helicases.
The mechanistic role of DNA-induced structural changes in RecQ helicases is largely unexplored.
DNA interaction of RecQ helicase depends on the nucleotide state of the enzyme and the presence of an intact HRDC domain.
We identified a structural transition of the RecQ-DNA complex that is linked to the mechanoenzymatic cycle.
This transition contributes to translocation along DNA and genome-maintaining activities.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M113.530741</identifier><identifier>PMID: 24403069</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Diphosphate - analogs & derivatives ; Adenosine Diphosphate - chemistry ; ATPases ; DNA and Chromosomes ; DNA Repair ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; DNA, Bacterial - metabolism ; DNA, Single-Stranded - chemistry ; DNA, Single-Stranded - genetics ; DNA, Single-Stranded - metabolism ; DNA-Protein Interaction ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Kinetics ; Molecular Motors ; Organometallic Compounds - chemistry ; Protein Conformation ; Protein Structure, Tertiary ; Recombination ; RecQ Helicases - chemistry ; RecQ Helicases - genetics ; RecQ Helicases - metabolism ; Ribonuclease III - chemistry ; Structure</subject><ispartof>The Journal of biological chemistry, 2014-02, Vol.289 (9), p.5938-5949</ispartof><rights>2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-98a2df40529f79bd18f147497175ad7bbb7fbbaff4e879a4f13506dc841a97983</citedby><cites>FETCH-LOGICAL-c443t-98a2df40529f79bd18f147497175ad7bbb7fbbaff4e879a4f13506dc841a97983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937662/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820440566$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24403069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kocsis, Zsuzsa S.</creatorcontrib><creatorcontrib>Sarlós, Kata</creatorcontrib><creatorcontrib>Harami, Gábor M.</creatorcontrib><creatorcontrib>Martina, Máté</creatorcontrib><creatorcontrib>Kovács, Mihály</creatorcontrib><title>A Nucleotide-dependent and HRDC Domain-dependent Structural Transition in DNA-bound RecQ Helicase</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The allosteric communication between the ATP- and DNA-binding sites of RecQ helicases enables efficient coupling of ATP hydrolysis to translocation along single-stranded DNA (ssDNA) and, in turn, the restructuring of multistranded DNA substrates during genome maintenance processes. In this study, we used the tryptophan fluorescence signal of Escherichia coli RecQ helicase to decipher the kinetic mechanism of the interaction of the enzyme with ssDNA. Rapid kinetic experiments revealed that ssDNA binding occurs in a two-step mechanism in which the initial binding step is followed by a structural transition of the DNA-bound helicase. We found that the nucleotide state of RecQ greatly influences the kinetics of the detected structural transition, which leads to a high affinity DNA-clamped state in the presence of the nucleotide analog ADP-AlF4. The DNA binding mechanism is largely independent of ssDNA length, indicating the independent binding of RecQ molecules to ssDNA and the lack of significant DNA end effects. The structural transition of DNA-bound RecQ was not detected when the ssDNA binding capability of the helicase-RNase D C-terminal domain was abolished or the domain was deleted. The results shed light on the nature of conformational changes leading to processive ssDNA translocation and multistranded DNA processing by RecQ helicases.
The mechanistic role of DNA-induced structural changes in RecQ helicases is largely unexplored.
DNA interaction of RecQ helicase depends on the nucleotide state of the enzyme and the presence of an intact HRDC domain.
We identified a structural transition of the RecQ-DNA complex that is linked to the mechanoenzymatic cycle.
This transition contributes to translocation along DNA and genome-maintaining activities.</description><subject>Adenosine Diphosphate - analogs & derivatives</subject><subject>Adenosine Diphosphate - chemistry</subject><subject>ATPases</subject><subject>DNA and Chromosomes</subject><subject>DNA Repair</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>DNA, Single-Stranded - genetics</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>DNA-Protein Interaction</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Kinetics</subject><subject>Molecular Motors</subject><subject>Organometallic Compounds - chemistry</subject><subject>Protein Conformation</subject><subject>Protein Structure, Tertiary</subject><subject>Recombination</subject><subject>RecQ Helicases - chemistry</subject><subject>RecQ Helicases - genetics</subject><subject>RecQ Helicases - metabolism</subject><subject>Ribonuclease III - chemistry</subject><subject>Structure</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kc1PGzEQxS1EBYFy5lbtkcsGe-1dry9IUdKSSpSqlEq9Wf4YF6ONHexdpP73dRSK6KFzsUbz5s2TfwidEzwnmLPLR23mXwih85aWlhygGcE9rWlLfh6iGcYNqUXT9sfoJOdHXIoJcoSOG8YwxZ2YIbWobiczQBy9hdrCFoKFMFYq2Gp9t1pWq7hRPryZfB_TZMYpqaG6TypkP_oYKh-q1e2i1nEqi3dgvlVrGLxRGd6jd04NGc5e3lP049PH--W6vvl6_Xm5uKkNY3SsRa8a6xhuG-G40Jb0jjDOBCe8VZZrrbnTWjnHoOdCMUdoiztrekaU4KKnp-hq77ud9AasKVlLRrlNfqPSbxmVl_9Ogn-Qv-KzpILyrmuKwcWLQYpPE-RRbnw2MAwqQJyyJC1mpOtEs7t1uZeaFHNO4F7PECx3YGQBI3dg5B5M2fjwNt2r_i-JIhB7AZQ_evaQZDYeggHrE5hR2uj_a_4HvkGdlw</recordid><startdate>20140228</startdate><enddate>20140228</enddate><creator>Kocsis, Zsuzsa S.</creator><creator>Sarlós, Kata</creator><creator>Harami, Gábor M.</creator><creator>Martina, Máté</creator><creator>Kovács, Mihály</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140228</creationdate><title>A Nucleotide-dependent and HRDC Domain-dependent Structural Transition in DNA-bound RecQ Helicase</title><author>Kocsis, Zsuzsa S. ; Sarlós, Kata ; Harami, Gábor M. ; Martina, Máté ; Kovács, Mihály</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-98a2df40529f79bd18f147497175ad7bbb7fbbaff4e879a4f13506dc841a97983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adenosine Diphosphate - analogs & derivatives</topic><topic>Adenosine Diphosphate - chemistry</topic><topic>ATPases</topic><topic>DNA and Chromosomes</topic><topic>DNA Repair</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>DNA, Single-Stranded - genetics</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>DNA-Protein Interaction</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Kinetics</topic><topic>Molecular Motors</topic><topic>Organometallic Compounds - chemistry</topic><topic>Protein Conformation</topic><topic>Protein Structure, Tertiary</topic><topic>Recombination</topic><topic>RecQ Helicases - chemistry</topic><topic>RecQ Helicases - genetics</topic><topic>RecQ Helicases - metabolism</topic><topic>Ribonuclease III - chemistry</topic><topic>Structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kocsis, Zsuzsa S.</creatorcontrib><creatorcontrib>Sarlós, Kata</creatorcontrib><creatorcontrib>Harami, Gábor M.</creatorcontrib><creatorcontrib>Martina, Máté</creatorcontrib><creatorcontrib>Kovács, Mihály</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kocsis, Zsuzsa S.</au><au>Sarlós, Kata</au><au>Harami, Gábor M.</au><au>Martina, Máté</au><au>Kovács, Mihály</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Nucleotide-dependent and HRDC Domain-dependent Structural Transition in DNA-bound RecQ Helicase</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2014-02-28</date><risdate>2014</risdate><volume>289</volume><issue>9</issue><spage>5938</spage><epage>5949</epage><pages>5938-5949</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The allosteric communication between the ATP- and DNA-binding sites of RecQ helicases enables efficient coupling of ATP hydrolysis to translocation along single-stranded DNA (ssDNA) and, in turn, the restructuring of multistranded DNA substrates during genome maintenance processes. In this study, we used the tryptophan fluorescence signal of Escherichia coli RecQ helicase to decipher the kinetic mechanism of the interaction of the enzyme with ssDNA. Rapid kinetic experiments revealed that ssDNA binding occurs in a two-step mechanism in which the initial binding step is followed by a structural transition of the DNA-bound helicase. We found that the nucleotide state of RecQ greatly influences the kinetics of the detected structural transition, which leads to a high affinity DNA-clamped state in the presence of the nucleotide analog ADP-AlF4. The DNA binding mechanism is largely independent of ssDNA length, indicating the independent binding of RecQ molecules to ssDNA and the lack of significant DNA end effects. The structural transition of DNA-bound RecQ was not detected when the ssDNA binding capability of the helicase-RNase D C-terminal domain was abolished or the domain was deleted. The results shed light on the nature of conformational changes leading to processive ssDNA translocation and multistranded DNA processing by RecQ helicases.
The mechanistic role of DNA-induced structural changes in RecQ helicases is largely unexplored.
DNA interaction of RecQ helicase depends on the nucleotide state of the enzyme and the presence of an intact HRDC domain.
We identified a structural transition of the RecQ-DNA complex that is linked to the mechanoenzymatic cycle.
This transition contributes to translocation along DNA and genome-maintaining activities.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24403069</pmid><doi>10.1074/jbc.M113.530741</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2014-02, Vol.289 (9), p.5938-5949 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3937662 |
source | Open Access: PubMed Central; ScienceDirect Journals |
subjects | Adenosine Diphosphate - analogs & derivatives Adenosine Diphosphate - chemistry ATPases DNA and Chromosomes DNA Repair DNA, Bacterial - chemistry DNA, Bacterial - genetics DNA, Bacterial - metabolism DNA, Single-Stranded - chemistry DNA, Single-Stranded - genetics DNA, Single-Stranded - metabolism DNA-Protein Interaction Escherichia coli - enzymology Escherichia coli - genetics Kinetics Molecular Motors Organometallic Compounds - chemistry Protein Conformation Protein Structure, Tertiary Recombination RecQ Helicases - chemistry RecQ Helicases - genetics RecQ Helicases - metabolism Ribonuclease III - chemistry Structure |
title | A Nucleotide-dependent and HRDC Domain-dependent Structural Transition in DNA-bound RecQ Helicase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Nucleotide-dependent%20and%20HRDC%20Domain-dependent%20Structural%20Transition%20in%20DNA-bound%20RecQ%20Helicase&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kocsis,%20Zsuzsa%20S.&rft.date=2014-02-28&rft.volume=289&rft.issue=9&rft.spage=5938&rft.epage=5949&rft.pages=5938-5949&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M113.530741&rft_dat=%3Cproquest_pubme%3E1504166928%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-98a2df40529f79bd18f147497175ad7bbb7fbbaff4e879a4f13506dc841a97983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1504166928&rft_id=info:pmid/24403069&rfr_iscdi=true |