Loading…

Thrombin inhibitory activity of some polyphenolic compounds

Thrombin, also known as an active plasma coagulation factor II, belongs to the family of serine proteases and plays a crucial role in blood coagulation process. The process of thrombin generation is the central event of the hemostatic process and regulates blood coagulant activity. For this reason,...

Full description

Saved in:
Bibliographic Details
Published in:Medicinal chemistry research 2014, Vol.23 (5), p.2324-2337
Main Authors: Bijak, M., Ziewiecki, R., Saluk, J., Ponczek, M., Pawlaczyk, I., Krotkiewski, H., Wachowicz, B., Nowak, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thrombin, also known as an active plasma coagulation factor II, belongs to the family of serine proteases and plays a crucial role in blood coagulation process. The process of thrombin generation is the central event of the hemostatic process and regulates blood coagulant activity. For this reason, thrombin inhibition is key to successful novel antithrombotic pharmacotherapy. The aim of our present study was to examine the effects of the well-known polyphenolic compounds on the activity of thrombin, by characterization of its interaction with selected polyphenols using different biochemical methods and biosensor BIAcore analyses. Only six compounds, cyanidin, quercetin, silybin, cyanin, (+)-catechin and (−)-epicatechin, of all examined in this study polyphenols caused the inhibition of thrombin amidolytic activity. But only three of the six compounds (cyanidin, quercetin and silybin) changed thrombin proteolytic activity. BIAcore analyses demonstrated that cyanidin and quercetin caused a strong response in the interaction with immobilized thrombin, while cyanin and (−)-epicatechin induced a low response. Lineweaver–Burk curves show that used polyphenol aglycones act as competitive thrombin inhibitors. Our results suggest that polyphenolic compounds might be potential structural bases and source to find and project nature-based, safe, orally bioavailable direct thrombin inhibitors.
ISSN:1054-2523
1554-8120
DOI:10.1007/s00044-013-0829-4