Loading…

The Alternative Route to Heme in the Methanogenic Archaeon Methanosarcina barkeri

In living organisms heme is formed from the common precursor uroporphyrinogen III by either one of two substantially different pathways. In contrast to eukaryotes and most bacteria which employ the so-called “classical” heme biosynthesis pathway, the archaea use an alternative route. In this pathway...

Full description

Saved in:
Bibliographic Details
Published in:Archaea 2014-01, Vol.2014 (2014), p.58-70
Main Authors: Kühner, Melanie, Haufschildt, Kristin, Neumann, Alexander, Storbeck, Sonja, Streif, Judith, Layer, Gunhild
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a563t-5d3c7d31e081fd0574624db31f88c1cd59d84e16aff2b3d5653f3a6ed62df983
cites cdi_FETCH-LOGICAL-a563t-5d3c7d31e081fd0574624db31f88c1cd59d84e16aff2b3d5653f3a6ed62df983
container_end_page 70
container_issue 2014
container_start_page 58
container_title Archaea
container_volume 2014
creator Kühner, Melanie
Haufschildt, Kristin
Neumann, Alexander
Storbeck, Sonja
Streif, Judith
Layer, Gunhild
description In living organisms heme is formed from the common precursor uroporphyrinogen III by either one of two substantially different pathways. In contrast to eukaryotes and most bacteria which employ the so-called “classical” heme biosynthesis pathway, the archaea use an alternative route. In this pathway, heme is formed from uroporphyrinogen III via the intermediates precorrin-2, sirohydrochlorin, siroheme, 12,18-didecarboxysiroheme, and iron-coproporphyrin III. In this study the heme biosynthesis proteins AhbAB, AhbC, and AhbD from Methanosarcina barkeri were functionally characterized. Using an in vivo enzyme activity assay it was shown that AhbA and AhbB (Mbar_A1459 and Mbar_A1460) together catalyze the conversion of siroheme into 12,18-didecarboxysiroheme. The two proteins form a heterodimeric complex which might be subject to feedback regulation by the pathway end-product heme. Further, AhbC (Mbar_A1793) was shown to catalyze the formation of iron-coproporphyrin III in vivo. Finally, recombinant AhbD (Mbar_A1458) was produced in E. coli and purified indicating that this protein most likely contains two [4Fe-4S] clusters. Using an in vitro enzyme activity assay it was demonstrated that AhbD catalyzes the conversion of iron-coproporphyrin III into heme.
doi_str_mv 10.1155/2014/327637
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3942049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A416596442</galeid><airiti_id>P20151125003_201412_201511250003_201511250003_58_70</airiti_id><sourcerecordid>A416596442</sourcerecordid><originalsourceid>FETCH-LOGICAL-a563t-5d3c7d31e081fd0574624db31f88c1cd59d84e16aff2b3d5653f3a6ed62df983</originalsourceid><addsrcrecordid>eNqFkktv1DAUhSMEoqWwYg2KxAaBpvU7yQZpVAEFFfHQ7C2PfT1xSezWdor493hIO0MREsrC8bnfPZaPb1U9xegYY85PCMLshJJG0OZedYhZQxZUcHZ_98_EQfUopQuECGpE-7A6IEyIrvQdVl9XPdTLIUP0KrtrqL-FKUOdQ30GI9TO17kAnyD3yocNeKfrZdS9guBv1aSidl7VaxW_Q3SPqwdWDQme3KxH1erd29Xp2eL88_sPp8vzheKC5gU3VDeGYkAttgbxhgnCzJpi27Yaa8M70zLAQllL1tRwwamlSoARxNiupUfVm9n2clqPYDT4HNUgL6MbVfwpg3LybsW7Xm7CtaQdI4h1xeDljUEMVxOkLEeXNAyD8hCmJDHHqMFUCFzQF3-hF2EqgQ1bCpWwCSViT23UANJ5G8q5emsqlwwL3gnGSKGO_0GVz8DodPBgXdHvNLyeG3QMKUWwuztiJLcDILcDIOcBKPTzP2PZsbcvXoBXM9A7b9QP9x-3ZzMMBQGrdjATtBW01D_OdeWiy24fy5fiwjEmHCH62xETuZdmbb_hrWwQ_QUfntOY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503652326</pqid></control><display><type>article</type><title>The Alternative Route to Heme in the Methanogenic Archaeon Methanosarcina barkeri</title><source>PubMed (Medline)</source><source>Wiley-Blackwell Open Access Titles (Open Access)</source><source>Publicly Available Content (ProQuest)</source><creator>Kühner, Melanie ; Haufschildt, Kristin ; Neumann, Alexander ; Storbeck, Sonja ; Streif, Judith ; Layer, Gunhild</creator><contributor>Whitman, William B.</contributor><creatorcontrib>Kühner, Melanie ; Haufschildt, Kristin ; Neumann, Alexander ; Storbeck, Sonja ; Streif, Judith ; Layer, Gunhild ; Whitman, William B.</creatorcontrib><description>In living organisms heme is formed from the common precursor uroporphyrinogen III by either one of two substantially different pathways. In contrast to eukaryotes and most bacteria which employ the so-called “classical” heme biosynthesis pathway, the archaea use an alternative route. In this pathway, heme is formed from uroporphyrinogen III via the intermediates precorrin-2, sirohydrochlorin, siroheme, 12,18-didecarboxysiroheme, and iron-coproporphyrin III. In this study the heme biosynthesis proteins AhbAB, AhbC, and AhbD from Methanosarcina barkeri were functionally characterized. Using an in vivo enzyme activity assay it was shown that AhbA and AhbB (Mbar_A1459 and Mbar_A1460) together catalyze the conversion of siroheme into 12,18-didecarboxysiroheme. The two proteins form a heterodimeric complex which might be subject to feedback regulation by the pathway end-product heme. Further, AhbC (Mbar_A1793) was shown to catalyze the formation of iron-coproporphyrin III in vivo. Finally, recombinant AhbD (Mbar_A1458) was produced in E. coli and purified indicating that this protein most likely contains two [4Fe-4S] clusters. Using an in vitro enzyme activity assay it was demonstrated that AhbD catalyzes the conversion of iron-coproporphyrin III into heme.</description><identifier>ISSN: 1472-3646</identifier><identifier>EISSN: 1472-3654</identifier><identifier>DOI: 10.1155/2014/327637</identifier><identifier>PMID: 24669201</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Archaeal Proteins - genetics ; Archaeal Proteins - metabolism ; Bacteria ; Biosynthesis ; Biosynthetic Pathways - genetics ; Enzymes ; Genetic aspects ; Genomes ; Heme ; Heme - biosynthesis ; Methanobacteriaceae ; Methanosarcina barkeri - enzymology ; Methanosarcina barkeri - genetics ; Methanosarcina barkeri - metabolism ; Microbiological synthesis ; Properties ; Protein Multimerization ; Proteins ; Retention ; Uroporphyrinogens - metabolism</subject><ispartof>Archaea, 2014-01, Vol.2014 (2014), p.58-70</ispartof><rights>Copyright © 2014 Melanie Kühner et al.</rights><rights>COPYRIGHT 2014 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2014 Melanie Kühner et al. Melanie Kühner et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2014 Melanie Kühner et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a563t-5d3c7d31e081fd0574624db31f88c1cd59d84e16aff2b3d5653f3a6ed62df983</citedby><cites>FETCH-LOGICAL-a563t-5d3c7d31e081fd0574624db31f88c1cd59d84e16aff2b3d5653f3a6ed62df983</cites><orcidid>0000-0001-5927-1671 ; 0000-0002-1569-3431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1503652326/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1503652326?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24669201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Whitman, William B.</contributor><creatorcontrib>Kühner, Melanie</creatorcontrib><creatorcontrib>Haufschildt, Kristin</creatorcontrib><creatorcontrib>Neumann, Alexander</creatorcontrib><creatorcontrib>Storbeck, Sonja</creatorcontrib><creatorcontrib>Streif, Judith</creatorcontrib><creatorcontrib>Layer, Gunhild</creatorcontrib><title>The Alternative Route to Heme in the Methanogenic Archaeon Methanosarcina barkeri</title><title>Archaea</title><addtitle>Archaea</addtitle><description>In living organisms heme is formed from the common precursor uroporphyrinogen III by either one of two substantially different pathways. In contrast to eukaryotes and most bacteria which employ the so-called “classical” heme biosynthesis pathway, the archaea use an alternative route. In this pathway, heme is formed from uroporphyrinogen III via the intermediates precorrin-2, sirohydrochlorin, siroheme, 12,18-didecarboxysiroheme, and iron-coproporphyrin III. In this study the heme biosynthesis proteins AhbAB, AhbC, and AhbD from Methanosarcina barkeri were functionally characterized. Using an in vivo enzyme activity assay it was shown that AhbA and AhbB (Mbar_A1459 and Mbar_A1460) together catalyze the conversion of siroheme into 12,18-didecarboxysiroheme. The two proteins form a heterodimeric complex which might be subject to feedback regulation by the pathway end-product heme. Further, AhbC (Mbar_A1793) was shown to catalyze the formation of iron-coproporphyrin III in vivo. Finally, recombinant AhbD (Mbar_A1458) was produced in E. coli and purified indicating that this protein most likely contains two [4Fe-4S] clusters. Using an in vitro enzyme activity assay it was demonstrated that AhbD catalyzes the conversion of iron-coproporphyrin III into heme.</description><subject>Archaeal Proteins - genetics</subject><subject>Archaeal Proteins - metabolism</subject><subject>Bacteria</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways - genetics</subject><subject>Enzymes</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Heme</subject><subject>Heme - biosynthesis</subject><subject>Methanobacteriaceae</subject><subject>Methanosarcina barkeri - enzymology</subject><subject>Methanosarcina barkeri - genetics</subject><subject>Methanosarcina barkeri - metabolism</subject><subject>Microbiological synthesis</subject><subject>Properties</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Retention</subject><subject>Uroporphyrinogens - metabolism</subject><issn>1472-3646</issn><issn>1472-3654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkktv1DAUhSMEoqWwYg2KxAaBpvU7yQZpVAEFFfHQ7C2PfT1xSezWdor493hIO0MREsrC8bnfPZaPb1U9xegYY85PCMLshJJG0OZedYhZQxZUcHZ_98_EQfUopQuECGpE-7A6IEyIrvQdVl9XPdTLIUP0KrtrqL-FKUOdQ30GI9TO17kAnyD3yocNeKfrZdS9guBv1aSidl7VaxW_Q3SPqwdWDQme3KxH1erd29Xp2eL88_sPp8vzheKC5gU3VDeGYkAttgbxhgnCzJpi27Yaa8M70zLAQllL1tRwwamlSoARxNiupUfVm9n2clqPYDT4HNUgL6MbVfwpg3LybsW7Xm7CtaQdI4h1xeDljUEMVxOkLEeXNAyD8hCmJDHHqMFUCFzQF3-hF2EqgQ1bCpWwCSViT23UANJ5G8q5emsqlwwL3gnGSKGO_0GVz8DodPBgXdHvNLyeG3QMKUWwuztiJLcDILcDIOcBKPTzP2PZsbcvXoBXM9A7b9QP9x-3ZzMMBQGrdjATtBW01D_OdeWiy24fy5fiwjEmHCH62xETuZdmbb_hrWwQ_QUfntOY</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Kühner, Melanie</creator><creator>Haufschildt, Kristin</creator><creator>Neumann, Alexander</creator><creator>Storbeck, Sonja</creator><creator>Streif, Judith</creator><creator>Layer, Gunhild</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5927-1671</orcidid><orcidid>https://orcid.org/0000-0002-1569-3431</orcidid></search><sort><creationdate>20140101</creationdate><title>The Alternative Route to Heme in the Methanogenic Archaeon Methanosarcina barkeri</title><author>Kühner, Melanie ; Haufschildt, Kristin ; Neumann, Alexander ; Storbeck, Sonja ; Streif, Judith ; Layer, Gunhild</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a563t-5d3c7d31e081fd0574624db31f88c1cd59d84e16aff2b3d5653f3a6ed62df983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Archaeal Proteins - genetics</topic><topic>Archaeal Proteins - metabolism</topic><topic>Bacteria</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways - genetics</topic><topic>Enzymes</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Heme</topic><topic>Heme - biosynthesis</topic><topic>Methanobacteriaceae</topic><topic>Methanosarcina barkeri - enzymology</topic><topic>Methanosarcina barkeri - genetics</topic><topic>Methanosarcina barkeri - metabolism</topic><topic>Microbiological synthesis</topic><topic>Properties</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Retention</topic><topic>Uroporphyrinogens - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kühner, Melanie</creatorcontrib><creatorcontrib>Haufschildt, Kristin</creatorcontrib><creatorcontrib>Neumann, Alexander</creatorcontrib><creatorcontrib>Storbeck, Sonja</creatorcontrib><creatorcontrib>Streif, Judith</creatorcontrib><creatorcontrib>Layer, Gunhild</creatorcontrib><collection>華藝線上圖書館</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Archaea</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kühner, Melanie</au><au>Haufschildt, Kristin</au><au>Neumann, Alexander</au><au>Storbeck, Sonja</au><au>Streif, Judith</au><au>Layer, Gunhild</au><au>Whitman, William B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Alternative Route to Heme in the Methanogenic Archaeon Methanosarcina barkeri</atitle><jtitle>Archaea</jtitle><addtitle>Archaea</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>58</spage><epage>70</epage><pages>58-70</pages><issn>1472-3646</issn><eissn>1472-3654</eissn><abstract>In living organisms heme is formed from the common precursor uroporphyrinogen III by either one of two substantially different pathways. In contrast to eukaryotes and most bacteria which employ the so-called “classical” heme biosynthesis pathway, the archaea use an alternative route. In this pathway, heme is formed from uroporphyrinogen III via the intermediates precorrin-2, sirohydrochlorin, siroheme, 12,18-didecarboxysiroheme, and iron-coproporphyrin III. In this study the heme biosynthesis proteins AhbAB, AhbC, and AhbD from Methanosarcina barkeri were functionally characterized. Using an in vivo enzyme activity assay it was shown that AhbA and AhbB (Mbar_A1459 and Mbar_A1460) together catalyze the conversion of siroheme into 12,18-didecarboxysiroheme. The two proteins form a heterodimeric complex which might be subject to feedback regulation by the pathway end-product heme. Further, AhbC (Mbar_A1793) was shown to catalyze the formation of iron-coproporphyrin III in vivo. Finally, recombinant AhbD (Mbar_A1458) was produced in E. coli and purified indicating that this protein most likely contains two [4Fe-4S] clusters. Using an in vitro enzyme activity assay it was demonstrated that AhbD catalyzes the conversion of iron-coproporphyrin III into heme.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><pmid>24669201</pmid><doi>10.1155/2014/327637</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5927-1671</orcidid><orcidid>https://orcid.org/0000-0002-1569-3431</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1472-3646
ispartof Archaea, 2014-01, Vol.2014 (2014), p.58-70
issn 1472-3646
1472-3654
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3942049
source PubMed (Medline); Wiley-Blackwell Open Access Titles (Open Access); Publicly Available Content (ProQuest)
subjects Archaeal Proteins - genetics
Archaeal Proteins - metabolism
Bacteria
Biosynthesis
Biosynthetic Pathways - genetics
Enzymes
Genetic aspects
Genomes
Heme
Heme - biosynthesis
Methanobacteriaceae
Methanosarcina barkeri - enzymology
Methanosarcina barkeri - genetics
Methanosarcina barkeri - metabolism
Microbiological synthesis
Properties
Protein Multimerization
Proteins
Retention
Uroporphyrinogens - metabolism
title The Alternative Route to Heme in the Methanogenic Archaeon Methanosarcina barkeri
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Alternative%20Route%20to%20Heme%20in%20the%20Methanogenic%20Archaeon%20Methanosarcina%20barkeri&rft.jtitle=Archaea&rft.au=K%C3%BChner,%20Melanie&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=58&rft.epage=70&rft.pages=58-70&rft.issn=1472-3646&rft.eissn=1472-3654&rft_id=info:doi/10.1155/2014/327637&rft_dat=%3Cgale_pubme%3EA416596442%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a563t-5d3c7d31e081fd0574624db31f88c1cd59d84e16aff2b3d5653f3a6ed62df983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1503652326&rft_id=info:pmid/24669201&rft_galeid=A416596442&rft_airiti_id=P20151125003_201412_201511250003_201511250003_58_70&rfr_iscdi=true