Loading…

Cerebral Oxygen Metabolism in Neonates with Congenital Heart Disease Quantified by MRI and Optics

Neonatal congenital heart disease (CHD) is associated with altered cerebral hemodynamics and increased risk of brain injury. Two novel noninvasive techniques, magnetic resonance imaging (MRI) and diffuse optical and correlation spectroscopies (diffuse optical spectroscopy (DOS), diffuse correlation...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cerebral blood flow and metabolism 2014-03, Vol.34 (3), p.380-388
Main Authors: Jain, Varsha, Buckley, Erin M, Licht, Daniel J, Lynch, Jennifer M, Schwab, Peter J, Naim, Maryam Y, Lavin, Natasha A, Nicolson, Susan C, Montenegro, Lisa M, Yodh, Arjun G, Wehrli, Felix W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neonatal congenital heart disease (CHD) is associated with altered cerebral hemodynamics and increased risk of brain injury. Two novel noninvasive techniques, magnetic resonance imaging (MRI) and diffuse optical and correlation spectroscopies (diffuse optical spectroscopy (DOS), diffuse correlation spectroscopy (DCS)), were employed to quantify cerebral blood flow (CBF) and oxygen metabolism (CMRO2) of 32 anesthetized CHD neonates at rest and during hypercapnia. Cerebral venous oxygen saturation (SvO2) and CBF were measured simultaneously with MRI in the superior sagittal sinus, yielding global oxygen extraction fraction (OEF) and global CMRO2 in physiologic units. In addition, microvascular tissue oxygenation (StO2) and indices of microvascular CBF (BFI) and CMRO2 (CMRO2i) in the frontal cortex were determined by DOS/DCS. Median resting-state MRI-measured OEF, CBF, and CMRO2 were 0.38, 9.7 mL/minute per 100 g and 0.52 mL O2/minute per 100 g, respectively. These CBF and CMRO2 values are lower than literature reports for healthy term neonates (which are sparse and quantified using different methods) and resemble values reported for premature infants. Comparison of MRI measurements of global SvO2, CBF, and CMRO2 with corresponding local DOS/DCS measurements demonstrated strong linear correlations (R2=0.69, 0.67, 0.67; P
ISSN:0271-678X
1559-7016
DOI:10.1038/jcbfm.2013.214