Loading…

Electron transfer from plastocyanin to photosystem I

Mutant plastocyanins with Leu at position 10, 90 or 83 (Gly, Ala and Tyr respectively in wildtype) were constructed by site‐specific mutagenesis of the spinach gene, and expressed in transgenic potato plants under the control of the authentic plastocyanin promoter, as well as in Escherichia coli as...

Full description

Saved in:
Bibliographic Details
Published in:The EMBO journal 1994-03, Vol.13 (5), p.1028-1038
Main Authors: Haehnel, W., Jansen, T., Gause, K., Klösgen, R.B., Stahl, B., Michl, D., Huvermann, B., Karas, M., Herrmann, R.G.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4701-a445846040ac0a08f2e0c02f40224ac057f614d58a97b982de9003ad4489dd7b3
cites
container_end_page 1038
container_issue 5
container_start_page 1028
container_title The EMBO journal
container_volume 13
creator Haehnel, W.
Jansen, T.
Gause, K.
Klösgen, R.B.
Stahl, B.
Michl, D.
Huvermann, B.
Karas, M.
Herrmann, R.G.
description Mutant plastocyanins with Leu at position 10, 90 or 83 (Gly, Ala and Tyr respectively in wildtype) were constructed by site‐specific mutagenesis of the spinach gene, and expressed in transgenic potato plants under the control of the authentic plastocyanin promoter, as well as in Escherichia coli as truncated precursor intermediates carrying the C‐terminal 22 amino acid residues of the transit peptide, i.e. the thylakoid‐targeting domain that acts as a bacterial export signal. The identity of the purified plastocyanins was verified by matrix‐assisted laser desorption/ionization mass spectrometry. The formation of a complex between authentic or mutant spinach plastocyanin and isolated photosystem I and the electron transfer has been studied from the biphasic reduction kinetics of P700+ after excitation with laser flashes. The formation of the complex was abolished by the bulky hydrophobic group of Leu at the respective position of G10 or A90 which are part of the conserved flat hydrophobic surface around the copper ligand H87. The rate of electron transfer decreased by both mutations to < 20% of that found with wildtype plastocyanin. We conclude that the conserved flat surface of plastocyanin represents one of two crucial structural elements for both the docking at photosystem I and the efficient electron transfer via H87 to P700+. The Y83L mutant exhibited faster electron transfer to P700+ than did authentic plastocyanin. This proves that Y83 is not involved in electron transfer to P700 and suggests that electron transfer from cytochrome f and to P700 follows different routes in the plastocyanin molecule. Plastocyanin (Y83L) expressed in either E. coli or potato exhibited different isoelectric points and binding constants to photosystem I indicative of differences in the folding of the protein. The structure of the binding site at photosystem I and the mechanism of electron transfer are discussed.
doi_str_mv 10.1002/j.1460-2075.1994.tb06351.x
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_394910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16941425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4701-a445846040ac0a08f2e0c02f40224ac057f614d58a97b982de9003ad4489dd7b3</originalsourceid><addsrcrecordid>eNqVkFFLwzAUhYMoc05_glBEfGu9SZO2EXyYY-pk4os-hyxNXUfbzKTT7d-buTL00adccs659_AhdIEhwgDkehFhmkBIIGUR5pxG7QySmOFofYD6e-kQ9YEkOKQ448foxLkFALAsxT3Uy3CM0zjtIzqutGqtaYLWysYV2gaFNXWwrKRrjdrIpvSSCZZz0xq3ca2ug8kpOipk5fRZ9w7Q2_34dfQYTl8eJqPhNFQ0BRxKSlnm21CQCiRkBdGggBQUCKH-i6VFgmnOMsnTGc9IrjlALHNKM57n6SweoNvd3uVqVutc6caXrMTSlrW0G2FkKf4qTTkX7-ZTxJxyDD5_1eWt-Vhp14q6dEpXlWy0WTmBE04xJcwbb3ZGZY1zVhf7GxjEFrlYiC1XseUqtshFh1ysffj8d8t9tGPs9ctOl07JqvCcVen2Nt-VsZh423Bn-yorvflHATF-vnv6meNvxpie0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16941425</pqid></control><display><type>article</type><title>Electron transfer from plastocyanin to photosystem I</title><source>Open Access: PubMed Central</source><creator>Haehnel, W. ; Jansen, T. ; Gause, K. ; Klösgen, R.B. ; Stahl, B. ; Michl, D. ; Huvermann, B. ; Karas, M. ; Herrmann, R.G.</creator><creatorcontrib>Haehnel, W. ; Jansen, T. ; Gause, K. ; Klösgen, R.B. ; Stahl, B. ; Michl, D. ; Huvermann, B. ; Karas, M. ; Herrmann, R.G.</creatorcontrib><description>Mutant plastocyanins with Leu at position 10, 90 or 83 (Gly, Ala and Tyr respectively in wildtype) were constructed by site‐specific mutagenesis of the spinach gene, and expressed in transgenic potato plants under the control of the authentic plastocyanin promoter, as well as in Escherichia coli as truncated precursor intermediates carrying the C‐terminal 22 amino acid residues of the transit peptide, i.e. the thylakoid‐targeting domain that acts as a bacterial export signal. The identity of the purified plastocyanins was verified by matrix‐assisted laser desorption/ionization mass spectrometry. The formation of a complex between authentic or mutant spinach plastocyanin and isolated photosystem I and the electron transfer has been studied from the biphasic reduction kinetics of P700+ after excitation with laser flashes. The formation of the complex was abolished by the bulky hydrophobic group of Leu at the respective position of G10 or A90 which are part of the conserved flat hydrophobic surface around the copper ligand H87. The rate of electron transfer decreased by both mutations to &lt; 20% of that found with wildtype plastocyanin. We conclude that the conserved flat surface of plastocyanin represents one of two crucial structural elements for both the docking at photosystem I and the efficient electron transfer via H87 to P700+. The Y83L mutant exhibited faster electron transfer to P700+ than did authentic plastocyanin. This proves that Y83 is not involved in electron transfer to P700 and suggests that electron transfer from cytochrome f and to P700 follows different routes in the plastocyanin molecule. Plastocyanin (Y83L) expressed in either E. coli or potato exhibited different isoelectric points and binding constants to photosystem I indicative of differences in the folding of the protein. The structure of the binding site at photosystem I and the mechanism of electron transfer are discussed.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1002/j.1460-2075.1994.tb06351.x</identifier><identifier>PMID: 8131737</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Nature Publishing Group</publisher><subject>Amino Acid Sequence ; Biological and medical sciences ; Electron Transport ; Escherichia coli ; Fundamental and applied biological sciences. Psychology ; Genes, Plant ; Kinetics ; Models, Molecular ; Molecular biophysics ; Mutagenesis, Site-Directed ; Photochemistry. Photosynthesis. Bioluminescence ; Photosynthetic Reaction Center Complex Proteins - chemistry ; Photosynthetic Reaction Center Complex Proteins - metabolism ; Photosystem I Protein Complex ; Plants, Genetically Modified ; Plastocyanin - chemistry ; Plastocyanin - genetics ; Plastocyanin - metabolism ; Protein Conformation ; Radiation-biomolecule interaction ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; Solanum tuberosum - metabolism ; Spinacia oleracea ; Vegetables - metabolism</subject><ispartof>The EMBO journal, 1994-03, Vol.13 (5), p.1028-1038</ispartof><rights>1994 European Molecular Biology Organization</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4701-a445846040ac0a08f2e0c02f40224ac057f614d58a97b982de9003ad4489dd7b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC394910/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC394910/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3945532$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8131737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haehnel, W.</creatorcontrib><creatorcontrib>Jansen, T.</creatorcontrib><creatorcontrib>Gause, K.</creatorcontrib><creatorcontrib>Klösgen, R.B.</creatorcontrib><creatorcontrib>Stahl, B.</creatorcontrib><creatorcontrib>Michl, D.</creatorcontrib><creatorcontrib>Huvermann, B.</creatorcontrib><creatorcontrib>Karas, M.</creatorcontrib><creatorcontrib>Herrmann, R.G.</creatorcontrib><title>Electron transfer from plastocyanin to photosystem I</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><description>Mutant plastocyanins with Leu at position 10, 90 or 83 (Gly, Ala and Tyr respectively in wildtype) were constructed by site‐specific mutagenesis of the spinach gene, and expressed in transgenic potato plants under the control of the authentic plastocyanin promoter, as well as in Escherichia coli as truncated precursor intermediates carrying the C‐terminal 22 amino acid residues of the transit peptide, i.e. the thylakoid‐targeting domain that acts as a bacterial export signal. The identity of the purified plastocyanins was verified by matrix‐assisted laser desorption/ionization mass spectrometry. The formation of a complex between authentic or mutant spinach plastocyanin and isolated photosystem I and the electron transfer has been studied from the biphasic reduction kinetics of P700+ after excitation with laser flashes. The formation of the complex was abolished by the bulky hydrophobic group of Leu at the respective position of G10 or A90 which are part of the conserved flat hydrophobic surface around the copper ligand H87. The rate of electron transfer decreased by both mutations to &lt; 20% of that found with wildtype plastocyanin. We conclude that the conserved flat surface of plastocyanin represents one of two crucial structural elements for both the docking at photosystem I and the efficient electron transfer via H87 to P700+. The Y83L mutant exhibited faster electron transfer to P700+ than did authentic plastocyanin. This proves that Y83 is not involved in electron transfer to P700 and suggests that electron transfer from cytochrome f and to P700 follows different routes in the plastocyanin molecule. Plastocyanin (Y83L) expressed in either E. coli or potato exhibited different isoelectric points and binding constants to photosystem I indicative of differences in the folding of the protein. The structure of the binding site at photosystem I and the mechanism of electron transfer are discussed.</description><subject>Amino Acid Sequence</subject><subject>Biological and medical sciences</subject><subject>Electron Transport</subject><subject>Escherichia coli</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes, Plant</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Molecular biophysics</subject><subject>Mutagenesis, Site-Directed</subject><subject>Photochemistry. Photosynthesis. Bioluminescence</subject><subject>Photosynthetic Reaction Center Complex Proteins - chemistry</subject><subject>Photosynthetic Reaction Center Complex Proteins - metabolism</subject><subject>Photosystem I Protein Complex</subject><subject>Plants, Genetically Modified</subject><subject>Plastocyanin - chemistry</subject><subject>Plastocyanin - genetics</subject><subject>Plastocyanin - metabolism</subject><subject>Protein Conformation</subject><subject>Radiation-biomolecule interaction</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>Solanum tuberosum - metabolism</subject><subject>Spinacia oleracea</subject><subject>Vegetables - metabolism</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqVkFFLwzAUhYMoc05_glBEfGu9SZO2EXyYY-pk4os-hyxNXUfbzKTT7d-buTL00adccs659_AhdIEhwgDkehFhmkBIIGUR5pxG7QySmOFofYD6e-kQ9YEkOKQ448foxLkFALAsxT3Uy3CM0zjtIzqutGqtaYLWysYV2gaFNXWwrKRrjdrIpvSSCZZz0xq3ca2ug8kpOipk5fRZ9w7Q2_34dfQYTl8eJqPhNFQ0BRxKSlnm21CQCiRkBdGggBQUCKH-i6VFgmnOMsnTGc9IrjlALHNKM57n6SweoNvd3uVqVutc6caXrMTSlrW0G2FkKf4qTTkX7-ZTxJxyDD5_1eWt-Vhp14q6dEpXlWy0WTmBE04xJcwbb3ZGZY1zVhf7GxjEFrlYiC1XseUqtshFh1ysffj8d8t9tGPs9ctOl07JqvCcVen2Nt-VsZh423Bn-yorvflHATF-vnv6meNvxpie0g</recordid><startdate>199403</startdate><enddate>199403</enddate><creator>Haehnel, W.</creator><creator>Jansen, T.</creator><creator>Gause, K.</creator><creator>Klösgen, R.B.</creator><creator>Stahl, B.</creator><creator>Michl, D.</creator><creator>Huvermann, B.</creator><creator>Karas, M.</creator><creator>Herrmann, R.G.</creator><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>199403</creationdate><title>Electron transfer from plastocyanin to photosystem I</title><author>Haehnel, W. ; Jansen, T. ; Gause, K. ; Klösgen, R.B. ; Stahl, B. ; Michl, D. ; Huvermann, B. ; Karas, M. ; Herrmann, R.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4701-a445846040ac0a08f2e0c02f40224ac057f614d58a97b982de9003ad4489dd7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Amino Acid Sequence</topic><topic>Biological and medical sciences</topic><topic>Electron Transport</topic><topic>Escherichia coli</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes, Plant</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Molecular biophysics</topic><topic>Mutagenesis, Site-Directed</topic><topic>Photochemistry. Photosynthesis. Bioluminescence</topic><topic>Photosynthetic Reaction Center Complex Proteins - chemistry</topic><topic>Photosynthetic Reaction Center Complex Proteins - metabolism</topic><topic>Photosystem I Protein Complex</topic><topic>Plants, Genetically Modified</topic><topic>Plastocyanin - chemistry</topic><topic>Plastocyanin - genetics</topic><topic>Plastocyanin - metabolism</topic><topic>Protein Conformation</topic><topic>Radiation-biomolecule interaction</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>Solanum tuberosum - metabolism</topic><topic>Spinacia oleracea</topic><topic>Vegetables - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haehnel, W.</creatorcontrib><creatorcontrib>Jansen, T.</creatorcontrib><creatorcontrib>Gause, K.</creatorcontrib><creatorcontrib>Klösgen, R.B.</creatorcontrib><creatorcontrib>Stahl, B.</creatorcontrib><creatorcontrib>Michl, D.</creatorcontrib><creatorcontrib>Huvermann, B.</creatorcontrib><creatorcontrib>Karas, M.</creatorcontrib><creatorcontrib>Herrmann, R.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haehnel, W.</au><au>Jansen, T.</au><au>Gause, K.</au><au>Klösgen, R.B.</au><au>Stahl, B.</au><au>Michl, D.</au><au>Huvermann, B.</au><au>Karas, M.</au><au>Herrmann, R.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron transfer from plastocyanin to photosystem I</atitle><jtitle>The EMBO journal</jtitle><addtitle>EMBO J</addtitle><date>1994-03</date><risdate>1994</risdate><volume>13</volume><issue>5</issue><spage>1028</spage><epage>1038</epage><pages>1028-1038</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Mutant plastocyanins with Leu at position 10, 90 or 83 (Gly, Ala and Tyr respectively in wildtype) were constructed by site‐specific mutagenesis of the spinach gene, and expressed in transgenic potato plants under the control of the authentic plastocyanin promoter, as well as in Escherichia coli as truncated precursor intermediates carrying the C‐terminal 22 amino acid residues of the transit peptide, i.e. the thylakoid‐targeting domain that acts as a bacterial export signal. The identity of the purified plastocyanins was verified by matrix‐assisted laser desorption/ionization mass spectrometry. The formation of a complex between authentic or mutant spinach plastocyanin and isolated photosystem I and the electron transfer has been studied from the biphasic reduction kinetics of P700+ after excitation with laser flashes. The formation of the complex was abolished by the bulky hydrophobic group of Leu at the respective position of G10 or A90 which are part of the conserved flat hydrophobic surface around the copper ligand H87. The rate of electron transfer decreased by both mutations to &lt; 20% of that found with wildtype plastocyanin. We conclude that the conserved flat surface of plastocyanin represents one of two crucial structural elements for both the docking at photosystem I and the efficient electron transfer via H87 to P700+. The Y83L mutant exhibited faster electron transfer to P700+ than did authentic plastocyanin. This proves that Y83 is not involved in electron transfer to P700 and suggests that electron transfer from cytochrome f and to P700 follows different routes in the plastocyanin molecule. Plastocyanin (Y83L) expressed in either E. coli or potato exhibited different isoelectric points and binding constants to photosystem I indicative of differences in the folding of the protein. The structure of the binding site at photosystem I and the mechanism of electron transfer are discussed.</abstract><cop>London</cop><pub>Nature Publishing Group</pub><pmid>8131737</pmid><doi>10.1002/j.1460-2075.1994.tb06351.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 1994-03, Vol.13 (5), p.1028-1038
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_394910
source Open Access: PubMed Central
subjects Amino Acid Sequence
Biological and medical sciences
Electron Transport
Escherichia coli
Fundamental and applied biological sciences. Psychology
Genes, Plant
Kinetics
Models, Molecular
Molecular biophysics
Mutagenesis, Site-Directed
Photochemistry. Photosynthesis. Bioluminescence
Photosynthetic Reaction Center Complex Proteins - chemistry
Photosynthetic Reaction Center Complex Proteins - metabolism
Photosystem I Protein Complex
Plants, Genetically Modified
Plastocyanin - chemistry
Plastocyanin - genetics
Plastocyanin - metabolism
Protein Conformation
Radiation-biomolecule interaction
Recombinant Proteins - chemistry
Recombinant Proteins - metabolism
Solanum tuberosum - metabolism
Spinacia oleracea
Vegetables - metabolism
title Electron transfer from plastocyanin to photosystem I
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20transfer%20from%20plastocyanin%20to%20photosystem%20I&rft.jtitle=The%20EMBO%20journal&rft.au=Haehnel,%20W.&rft.date=1994-03&rft.volume=13&rft.issue=5&rft.spage=1028&rft.epage=1038&rft.pages=1028-1038&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1002/j.1460-2075.1994.tb06351.x&rft_dat=%3Cproquest_pubme%3E16941425%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4701-a445846040ac0a08f2e0c02f40224ac057f614d58a97b982de9003ad4489dd7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16941425&rft_id=info:pmid/8131737&rfr_iscdi=true