Loading…

A Trimeric Lipoprotein Assists in Trimeric Autotransporter Biogenesis in Enterobacteria

Trimeric autotransporter adhesins (TAAs) are important virulence factors of many Gram-negative bacterial pathogens. TAAs form fibrous, adhesive structures on the bacterial cell surface. Their N-terminal extracellular domains are exported through a C-terminal membrane pore; the insertion of the pore...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2014-03, Vol.289 (11), p.7388-7398
Main Authors: Grin, Iwan, Hartmann, Marcus D., Sauer, Guido, Hernandez Alvarez, Birte, Schütz, Monika, Wagner, Samuel, Madlung, Johannes, Macek, Boris, Felipe-Lopez, Alfonso, Hensel, Michael, Lupas, Andrei, Linke, Dirk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Trimeric autotransporter adhesins (TAAs) are important virulence factors of many Gram-negative bacterial pathogens. TAAs form fibrous, adhesive structures on the bacterial cell surface. Their N-terminal extracellular domains are exported through a C-terminal membrane pore; the insertion of the pore domain into the bacterial outer membrane follows the rules of β-barrel transmembrane protein biogenesis and is dependent on the essential Bam complex. We have recently described the full fiber structure of SadA, a TAA of unknown function in Salmonella and other enterobacteria. In this work, we describe the structure and function of SadB, a small inner membrane lipoprotein. The sadB gene is located in an operon with sadA; orthologous operons are only found in enterobacteria, whereas other TAAs are not typically associated with lipoproteins. Strikingly, SadB is also a trimer, and its co-expression with SadA has a direct influence on SadA structural integrity. This is the first report of a specific export factor of a TAA, suggesting that at least in some cases TAA autotransport is assisted by additional periplasmic proteins. Background: Autotransporter adhesins reach the bacterial cell surface by a complex mechanism. Results: In the case of the autotransporter SadA from Salmonella, a lipoprotein assists in surface display. Conclusion: The similarity to eukaryotic MATH domains suggests that the lipoprotein assists in trimerization of SadA. Significance: Understanding the similarities between autotransport systems might lead to new ways of inhibiting bacterial adhesion.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M113.513275