Loading…
Iron Regulatory Protein-1 Protects against Mitoferrin-1-deficient Porphyria
Mitochondrial iron is essential for the biosynthesis of heme and iron-sulfur ([Fe-S]) clusters in mammalian cells. In developing erythrocytes, iron is imported into the mitochondria by MFRN1 (mitoferrin-1, SLC25A37). Although loss of MFRN1 in zebrafish and mice leads to profound anemia, mutant anima...
Saved in:
Published in: | The Journal of biological chemistry 2014-03, Vol.289 (11), p.7835-7843 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c489t-e165bf48a940b704dd07dd7131b6894592e6359c88d3a7c68e7a386a5ad51a7a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c489t-e165bf48a940b704dd07dd7131b6894592e6359c88d3a7c68e7a386a5ad51a7a3 |
container_end_page | 7843 |
container_issue | 11 |
container_start_page | 7835 |
container_title | The Journal of biological chemistry |
container_volume | 289 |
creator | Chung, Jacky Anderson, Sheila A. Gwynn, Babette Deck, Kathryn M. Chen, Michael J. Langer, Nathaniel B. Shaw, George C. Huston, Nicholas C. Boyer, Leah F. Datta, Sumon Paradkar, Prasad N. Li, Liangtao Wei, Zong Lambert, Amy J. Sahr, Kenneth Wittig, Johannes G. Chen, Wen Lu, Wange Galy, Bruno Schlaeger, Thorsten M. Hentze, Matthias W. Ward, Diane M. Kaplan, Jerry Eisenstein, Richard S. Peters, Luanne L. Paw, Barry H. |
description | Mitochondrial iron is essential for the biosynthesis of heme and iron-sulfur ([Fe-S]) clusters in mammalian cells. In developing erythrocytes, iron is imported into the mitochondria by MFRN1 (mitoferrin-1, SLC25A37). Although loss of MFRN1 in zebrafish and mice leads to profound anemia, mutant animals showed no overt signs of porphyria, suggesting that mitochondrial iron deficiency does not result in an accumulation of protoporphyrins. Here, we developed a gene trap model to provide in vitro and in vivo evidence that iron regulatory protein-1 (IRP1) inhibits protoporphyrin accumulation. Mfrn1+/gt;Irp1−/− erythroid cells exhibit a significant increase in protoporphyrin levels. IRP1 attenuates protoporphyrin biosynthesis by binding to the 5′-iron response element (IRE) of alas2 mRNA, inhibiting its translation. Ectopic expression of alas2 harboring a mutant IRE, preventing IRP1 binding, in Mfrn1gt/gt cells mimics Irp1 deficiency. Together, our data support a model whereby impaired mitochondrial [Fe-S] cluster biogenesis in Mfrn1gt/gt cells results in elevated IRP1 RNA-binding that attenuates ALAS2 mRNA translation and protoporphyrin accumulation.
Background: Heme and [Fe-S] cluster assembly are tightly regulated processes that require mitochondrial iron.
Results: Loss of mitochondrial iron activates the [Fe-S]-dependent RNA-binding activity of IRP1 that inhibits protoporphyrin biosynthesis.
Conclusion: IRP1 forms a critical feedback mechanism, preventing protoporphyrin accumulation under limiting mitochondrial iron conditions.
Significance: This study provides evidence linking heme biogenesis to that of [Fe-S] clusters synthesis. |
doi_str_mv | 10.1074/jbc.M114.547778 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3953295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820442875</els_id><sourcerecordid>1508420729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-e165bf48a940b704dd07dd7131b6894592e6359c88d3a7c68e7a386a5ad51a7a3</originalsourceid><addsrcrecordid>eNp1kc1LxDAQxYMouq6evUmPXrombdIkF0HEL3RxEQVvIU2ma6TbrElX2P_eLFXRg4GQgfnlzfAeQkcETwjm9PStNpMpIXTCKOdcbKERwaLMS0ZettEI44LksmBiD-3H-IbToZLsor2CMiwFkyN0dxt8lz3CfNXq3od1Ngu-B9flZKhMHzM9166LfTZ1vW8ghE03t9A446Drs5kPy9d1cPoA7TS6jXD49Y7R89Xl08VNfv9wfXtxfp8bKmSfA6lY3VChJcU1x9RazK3lpCR1JSRlsoCqZNIIYUvNTSWA61JUmmnLiE71GJ0NustVvQBr0hJBt2oZ3EKHtfLaqb-dzr2quf9QpWRlke4YnXwJBP--gtirhYsG2lZ34FdREYYFLTAvZEJPB9QEH2OA5mcMwWoTgUoRqE0Eaogg_Tj-vd0P_-15AuQAQPLow0FQcWOkAetC8ltZ7_4V_wQ6BZae</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1508420729</pqid></control><display><type>article</type><title>Iron Regulatory Protein-1 Protects against Mitoferrin-1-deficient Porphyria</title><source>PubMed Central Free</source><source>Elsevier ScienceDirect Journals</source><creator>Chung, Jacky ; Anderson, Sheila A. ; Gwynn, Babette ; Deck, Kathryn M. ; Chen, Michael J. ; Langer, Nathaniel B. ; Shaw, George C. ; Huston, Nicholas C. ; Boyer, Leah F. ; Datta, Sumon ; Paradkar, Prasad N. ; Li, Liangtao ; Wei, Zong ; Lambert, Amy J. ; Sahr, Kenneth ; Wittig, Johannes G. ; Chen, Wen ; Lu, Wange ; Galy, Bruno ; Schlaeger, Thorsten M. ; Hentze, Matthias W. ; Ward, Diane M. ; Kaplan, Jerry ; Eisenstein, Richard S. ; Peters, Luanne L. ; Paw, Barry H.</creator><creatorcontrib>Chung, Jacky ; Anderson, Sheila A. ; Gwynn, Babette ; Deck, Kathryn M. ; Chen, Michael J. ; Langer, Nathaniel B. ; Shaw, George C. ; Huston, Nicholas C. ; Boyer, Leah F. ; Datta, Sumon ; Paradkar, Prasad N. ; Li, Liangtao ; Wei, Zong ; Lambert, Amy J. ; Sahr, Kenneth ; Wittig, Johannes G. ; Chen, Wen ; Lu, Wange ; Galy, Bruno ; Schlaeger, Thorsten M. ; Hentze, Matthias W. ; Ward, Diane M. ; Kaplan, Jerry ; Eisenstein, Richard S. ; Peters, Luanne L. ; Paw, Barry H.</creatorcontrib><description>Mitochondrial iron is essential for the biosynthesis of heme and iron-sulfur ([Fe-S]) clusters in mammalian cells. In developing erythrocytes, iron is imported into the mitochondria by MFRN1 (mitoferrin-1, SLC25A37). Although loss of MFRN1 in zebrafish and mice leads to profound anemia, mutant animals showed no overt signs of porphyria, suggesting that mitochondrial iron deficiency does not result in an accumulation of protoporphyrins. Here, we developed a gene trap model to provide in vitro and in vivo evidence that iron regulatory protein-1 (IRP1) inhibits protoporphyrin accumulation. Mfrn1+/gt;Irp1−/− erythroid cells exhibit a significant increase in protoporphyrin levels. IRP1 attenuates protoporphyrin biosynthesis by binding to the 5′-iron response element (IRE) of alas2 mRNA, inhibiting its translation. Ectopic expression of alas2 harboring a mutant IRE, preventing IRP1 binding, in Mfrn1gt/gt cells mimics Irp1 deficiency. Together, our data support a model whereby impaired mitochondrial [Fe-S] cluster biogenesis in Mfrn1gt/gt cells results in elevated IRP1 RNA-binding that attenuates ALAS2 mRNA translation and protoporphyrin accumulation.
Background: Heme and [Fe-S] cluster assembly are tightly regulated processes that require mitochondrial iron.
Results: Loss of mitochondrial iron activates the [Fe-S]-dependent RNA-binding activity of IRP1 that inhibits protoporphyrin biosynthesis.
Conclusion: IRP1 forms a critical feedback mechanism, preventing protoporphyrin accumulation under limiting mitochondrial iron conditions.
Significance: This study provides evidence linking heme biogenesis to that of [Fe-S] clusters synthesis.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M114.547778</identifier><identifier>PMID: 24509859</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>5-Aminolevulinate Synthetase - metabolism ; Animals ; Blastocyst - cytology ; Cell Biology ; Cell Differentiation ; Cell Line, Tumor ; Erythropoeisis ; Fe-S Cluster Biogenesis ; Female ; Gene Expression Regulation ; Genotype ; HEK293 Cells ; Heme ; Heme - chemistry ; Humans ; Iron ; Iron - chemistry ; Iron Regulatory Protein 1 - metabolism ; Iron-sulfur Protein ; Iron-Sulfur Proteins - metabolism ; Male ; Membrane Transport Proteins - metabolism ; Mice ; Mice, Inbred C57BL ; Mitochondrial Solute Carrier ; Mitochondrial Transport ; Porphyrias - metabolism ; Protein Biosynthesis ; Protoporphyrin ; Protoporphyrins - metabolism ; Zebrafish</subject><ispartof>The Journal of biological chemistry, 2014-03, Vol.289 (11), p.7835-7843</ispartof><rights>2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-e165bf48a940b704dd07dd7131b6894592e6359c88d3a7c68e7a386a5ad51a7a3</citedby><cites>FETCH-LOGICAL-c489t-e165bf48a940b704dd07dd7131b6894592e6359c88d3a7c68e7a386a5ad51a7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953295/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820442875$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24509859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chung, Jacky</creatorcontrib><creatorcontrib>Anderson, Sheila A.</creatorcontrib><creatorcontrib>Gwynn, Babette</creatorcontrib><creatorcontrib>Deck, Kathryn M.</creatorcontrib><creatorcontrib>Chen, Michael J.</creatorcontrib><creatorcontrib>Langer, Nathaniel B.</creatorcontrib><creatorcontrib>Shaw, George C.</creatorcontrib><creatorcontrib>Huston, Nicholas C.</creatorcontrib><creatorcontrib>Boyer, Leah F.</creatorcontrib><creatorcontrib>Datta, Sumon</creatorcontrib><creatorcontrib>Paradkar, Prasad N.</creatorcontrib><creatorcontrib>Li, Liangtao</creatorcontrib><creatorcontrib>Wei, Zong</creatorcontrib><creatorcontrib>Lambert, Amy J.</creatorcontrib><creatorcontrib>Sahr, Kenneth</creatorcontrib><creatorcontrib>Wittig, Johannes G.</creatorcontrib><creatorcontrib>Chen, Wen</creatorcontrib><creatorcontrib>Lu, Wange</creatorcontrib><creatorcontrib>Galy, Bruno</creatorcontrib><creatorcontrib>Schlaeger, Thorsten M.</creatorcontrib><creatorcontrib>Hentze, Matthias W.</creatorcontrib><creatorcontrib>Ward, Diane M.</creatorcontrib><creatorcontrib>Kaplan, Jerry</creatorcontrib><creatorcontrib>Eisenstein, Richard S.</creatorcontrib><creatorcontrib>Peters, Luanne L.</creatorcontrib><creatorcontrib>Paw, Barry H.</creatorcontrib><title>Iron Regulatory Protein-1 Protects against Mitoferrin-1-deficient Porphyria</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Mitochondrial iron is essential for the biosynthesis of heme and iron-sulfur ([Fe-S]) clusters in mammalian cells. In developing erythrocytes, iron is imported into the mitochondria by MFRN1 (mitoferrin-1, SLC25A37). Although loss of MFRN1 in zebrafish and mice leads to profound anemia, mutant animals showed no overt signs of porphyria, suggesting that mitochondrial iron deficiency does not result in an accumulation of protoporphyrins. Here, we developed a gene trap model to provide in vitro and in vivo evidence that iron regulatory protein-1 (IRP1) inhibits protoporphyrin accumulation. Mfrn1+/gt;Irp1−/− erythroid cells exhibit a significant increase in protoporphyrin levels. IRP1 attenuates protoporphyrin biosynthesis by binding to the 5′-iron response element (IRE) of alas2 mRNA, inhibiting its translation. Ectopic expression of alas2 harboring a mutant IRE, preventing IRP1 binding, in Mfrn1gt/gt cells mimics Irp1 deficiency. Together, our data support a model whereby impaired mitochondrial [Fe-S] cluster biogenesis in Mfrn1gt/gt cells results in elevated IRP1 RNA-binding that attenuates ALAS2 mRNA translation and protoporphyrin accumulation.
Background: Heme and [Fe-S] cluster assembly are tightly regulated processes that require mitochondrial iron.
Results: Loss of mitochondrial iron activates the [Fe-S]-dependent RNA-binding activity of IRP1 that inhibits protoporphyrin biosynthesis.
Conclusion: IRP1 forms a critical feedback mechanism, preventing protoporphyrin accumulation under limiting mitochondrial iron conditions.
Significance: This study provides evidence linking heme biogenesis to that of [Fe-S] clusters synthesis.</description><subject>5-Aminolevulinate Synthetase - metabolism</subject><subject>Animals</subject><subject>Blastocyst - cytology</subject><subject>Cell Biology</subject><subject>Cell Differentiation</subject><subject>Cell Line, Tumor</subject><subject>Erythropoeisis</subject><subject>Fe-S Cluster Biogenesis</subject><subject>Female</subject><subject>Gene Expression Regulation</subject><subject>Genotype</subject><subject>HEK293 Cells</subject><subject>Heme</subject><subject>Heme - chemistry</subject><subject>Humans</subject><subject>Iron</subject><subject>Iron - chemistry</subject><subject>Iron Regulatory Protein 1 - metabolism</subject><subject>Iron-sulfur Protein</subject><subject>Iron-Sulfur Proteins - metabolism</subject><subject>Male</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mitochondrial Solute Carrier</subject><subject>Mitochondrial Transport</subject><subject>Porphyrias - metabolism</subject><subject>Protein Biosynthesis</subject><subject>Protoporphyrin</subject><subject>Protoporphyrins - metabolism</subject><subject>Zebrafish</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kc1LxDAQxYMouq6evUmPXrombdIkF0HEL3RxEQVvIU2ma6TbrElX2P_eLFXRg4GQgfnlzfAeQkcETwjm9PStNpMpIXTCKOdcbKERwaLMS0ZettEI44LksmBiD-3H-IbToZLsor2CMiwFkyN0dxt8lz3CfNXq3od1Ngu-B9flZKhMHzM9166LfTZ1vW8ghE03t9A446Drs5kPy9d1cPoA7TS6jXD49Y7R89Xl08VNfv9wfXtxfp8bKmSfA6lY3VChJcU1x9RazK3lpCR1JSRlsoCqZNIIYUvNTSWA61JUmmnLiE71GJ0NustVvQBr0hJBt2oZ3EKHtfLaqb-dzr2quf9QpWRlke4YnXwJBP--gtirhYsG2lZ34FdREYYFLTAvZEJPB9QEH2OA5mcMwWoTgUoRqE0Eaogg_Tj-vd0P_-15AuQAQPLow0FQcWOkAetC8ltZ7_4V_wQ6BZae</recordid><startdate>20140314</startdate><enddate>20140314</enddate><creator>Chung, Jacky</creator><creator>Anderson, Sheila A.</creator><creator>Gwynn, Babette</creator><creator>Deck, Kathryn M.</creator><creator>Chen, Michael J.</creator><creator>Langer, Nathaniel B.</creator><creator>Shaw, George C.</creator><creator>Huston, Nicholas C.</creator><creator>Boyer, Leah F.</creator><creator>Datta, Sumon</creator><creator>Paradkar, Prasad N.</creator><creator>Li, Liangtao</creator><creator>Wei, Zong</creator><creator>Lambert, Amy J.</creator><creator>Sahr, Kenneth</creator><creator>Wittig, Johannes G.</creator><creator>Chen, Wen</creator><creator>Lu, Wange</creator><creator>Galy, Bruno</creator><creator>Schlaeger, Thorsten M.</creator><creator>Hentze, Matthias W.</creator><creator>Ward, Diane M.</creator><creator>Kaplan, Jerry</creator><creator>Eisenstein, Richard S.</creator><creator>Peters, Luanne L.</creator><creator>Paw, Barry H.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140314</creationdate><title>Iron Regulatory Protein-1 Protects against Mitoferrin-1-deficient Porphyria</title><author>Chung, Jacky ; Anderson, Sheila A. ; Gwynn, Babette ; Deck, Kathryn M. ; Chen, Michael J. ; Langer, Nathaniel B. ; Shaw, George C. ; Huston, Nicholas C. ; Boyer, Leah F. ; Datta, Sumon ; Paradkar, Prasad N. ; Li, Liangtao ; Wei, Zong ; Lambert, Amy J. ; Sahr, Kenneth ; Wittig, Johannes G. ; Chen, Wen ; Lu, Wange ; Galy, Bruno ; Schlaeger, Thorsten M. ; Hentze, Matthias W. ; Ward, Diane M. ; Kaplan, Jerry ; Eisenstein, Richard S. ; Peters, Luanne L. ; Paw, Barry H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-e165bf48a940b704dd07dd7131b6894592e6359c88d3a7c68e7a386a5ad51a7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>5-Aminolevulinate Synthetase - metabolism</topic><topic>Animals</topic><topic>Blastocyst - cytology</topic><topic>Cell Biology</topic><topic>Cell Differentiation</topic><topic>Cell Line, Tumor</topic><topic>Erythropoeisis</topic><topic>Fe-S Cluster Biogenesis</topic><topic>Female</topic><topic>Gene Expression Regulation</topic><topic>Genotype</topic><topic>HEK293 Cells</topic><topic>Heme</topic><topic>Heme - chemistry</topic><topic>Humans</topic><topic>Iron</topic><topic>Iron - chemistry</topic><topic>Iron Regulatory Protein 1 - metabolism</topic><topic>Iron-sulfur Protein</topic><topic>Iron-Sulfur Proteins - metabolism</topic><topic>Male</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mitochondrial Solute Carrier</topic><topic>Mitochondrial Transport</topic><topic>Porphyrias - metabolism</topic><topic>Protein Biosynthesis</topic><topic>Protoporphyrin</topic><topic>Protoporphyrins - metabolism</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, Jacky</creatorcontrib><creatorcontrib>Anderson, Sheila A.</creatorcontrib><creatorcontrib>Gwynn, Babette</creatorcontrib><creatorcontrib>Deck, Kathryn M.</creatorcontrib><creatorcontrib>Chen, Michael J.</creatorcontrib><creatorcontrib>Langer, Nathaniel B.</creatorcontrib><creatorcontrib>Shaw, George C.</creatorcontrib><creatorcontrib>Huston, Nicholas C.</creatorcontrib><creatorcontrib>Boyer, Leah F.</creatorcontrib><creatorcontrib>Datta, Sumon</creatorcontrib><creatorcontrib>Paradkar, Prasad N.</creatorcontrib><creatorcontrib>Li, Liangtao</creatorcontrib><creatorcontrib>Wei, Zong</creatorcontrib><creatorcontrib>Lambert, Amy J.</creatorcontrib><creatorcontrib>Sahr, Kenneth</creatorcontrib><creatorcontrib>Wittig, Johannes G.</creatorcontrib><creatorcontrib>Chen, Wen</creatorcontrib><creatorcontrib>Lu, Wange</creatorcontrib><creatorcontrib>Galy, Bruno</creatorcontrib><creatorcontrib>Schlaeger, Thorsten M.</creatorcontrib><creatorcontrib>Hentze, Matthias W.</creatorcontrib><creatorcontrib>Ward, Diane M.</creatorcontrib><creatorcontrib>Kaplan, Jerry</creatorcontrib><creatorcontrib>Eisenstein, Richard S.</creatorcontrib><creatorcontrib>Peters, Luanne L.</creatorcontrib><creatorcontrib>Paw, Barry H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, Jacky</au><au>Anderson, Sheila A.</au><au>Gwynn, Babette</au><au>Deck, Kathryn M.</au><au>Chen, Michael J.</au><au>Langer, Nathaniel B.</au><au>Shaw, George C.</au><au>Huston, Nicholas C.</au><au>Boyer, Leah F.</au><au>Datta, Sumon</au><au>Paradkar, Prasad N.</au><au>Li, Liangtao</au><au>Wei, Zong</au><au>Lambert, Amy J.</au><au>Sahr, Kenneth</au><au>Wittig, Johannes G.</au><au>Chen, Wen</au><au>Lu, Wange</au><au>Galy, Bruno</au><au>Schlaeger, Thorsten M.</au><au>Hentze, Matthias W.</au><au>Ward, Diane M.</au><au>Kaplan, Jerry</au><au>Eisenstein, Richard S.</au><au>Peters, Luanne L.</au><au>Paw, Barry H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron Regulatory Protein-1 Protects against Mitoferrin-1-deficient Porphyria</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2014-03-14</date><risdate>2014</risdate><volume>289</volume><issue>11</issue><spage>7835</spage><epage>7843</epage><pages>7835-7843</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Mitochondrial iron is essential for the biosynthesis of heme and iron-sulfur ([Fe-S]) clusters in mammalian cells. In developing erythrocytes, iron is imported into the mitochondria by MFRN1 (mitoferrin-1, SLC25A37). Although loss of MFRN1 in zebrafish and mice leads to profound anemia, mutant animals showed no overt signs of porphyria, suggesting that mitochondrial iron deficiency does not result in an accumulation of protoporphyrins. Here, we developed a gene trap model to provide in vitro and in vivo evidence that iron regulatory protein-1 (IRP1) inhibits protoporphyrin accumulation. Mfrn1+/gt;Irp1−/− erythroid cells exhibit a significant increase in protoporphyrin levels. IRP1 attenuates protoporphyrin biosynthesis by binding to the 5′-iron response element (IRE) of alas2 mRNA, inhibiting its translation. Ectopic expression of alas2 harboring a mutant IRE, preventing IRP1 binding, in Mfrn1gt/gt cells mimics Irp1 deficiency. Together, our data support a model whereby impaired mitochondrial [Fe-S] cluster biogenesis in Mfrn1gt/gt cells results in elevated IRP1 RNA-binding that attenuates ALAS2 mRNA translation and protoporphyrin accumulation.
Background: Heme and [Fe-S] cluster assembly are tightly regulated processes that require mitochondrial iron.
Results: Loss of mitochondrial iron activates the [Fe-S]-dependent RNA-binding activity of IRP1 that inhibits protoporphyrin biosynthesis.
Conclusion: IRP1 forms a critical feedback mechanism, preventing protoporphyrin accumulation under limiting mitochondrial iron conditions.
Significance: This study provides evidence linking heme biogenesis to that of [Fe-S] clusters synthesis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24509859</pmid><doi>10.1074/jbc.M114.547778</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2014-03, Vol.289 (11), p.7835-7843 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3953295 |
source | PubMed Central Free; Elsevier ScienceDirect Journals |
subjects | 5-Aminolevulinate Synthetase - metabolism Animals Blastocyst - cytology Cell Biology Cell Differentiation Cell Line, Tumor Erythropoeisis Fe-S Cluster Biogenesis Female Gene Expression Regulation Genotype HEK293 Cells Heme Heme - chemistry Humans Iron Iron - chemistry Iron Regulatory Protein 1 - metabolism Iron-sulfur Protein Iron-Sulfur Proteins - metabolism Male Membrane Transport Proteins - metabolism Mice Mice, Inbred C57BL Mitochondrial Solute Carrier Mitochondrial Transport Porphyrias - metabolism Protein Biosynthesis Protoporphyrin Protoporphyrins - metabolism Zebrafish |
title | Iron Regulatory Protein-1 Protects against Mitoferrin-1-deficient Porphyria |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron%20Regulatory%20Protein-1%20Protects%20against%20Mitoferrin-1-deficient%20Porphyria&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Chung,%20Jacky&rft.date=2014-03-14&rft.volume=289&rft.issue=11&rft.spage=7835&rft.epage=7843&rft.pages=7835-7843&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M114.547778&rft_dat=%3Cproquest_pubme%3E1508420729%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-e165bf48a940b704dd07dd7131b6894592e6359c88d3a7c68e7a386a5ad51a7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1508420729&rft_id=info:pmid/24509859&rfr_iscdi=true |