Loading…

Adaptation disrupts motion integration in the primate dorsal stream

Sensory systems adjust continuously to the environment. The effects of recent sensory experience-or adaptation-are typically assayed by recording in a relevant subcortical or cortical network. However, adaptation effects cannot be localized to a single, local network. Adjustments in one circuit or a...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Mass.), 2014-02, Vol.81 (3), p.674-686
Main Authors: Patterson, Carlyn A, Wissig, Stephanie C, Kohn, Adam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sensory systems adjust continuously to the environment. The effects of recent sensory experience-or adaptation-are typically assayed by recording in a relevant subcortical or cortical network. However, adaptation effects cannot be localized to a single, local network. Adjustments in one circuit or area will alter the input provided to others, with unclear consequences for computations implemented in downstream circuits. Here, we show that prolonged adaptation with drifting gratings, which alters responses in the early visual system, impedes the ability of area MT neurons to integrate motion signals in plaid stimuli. Perceptual experiments reveal a corresponding loss of plaid coherence. A simple computational model shows how the altered representation of motion signals in early cortex can derail integration in MT. Our results suggest that the effects of adaptation cascade through the visual system, derailing the downstream representation of distinct stimulus attributes.
ISSN:0896-6273
1097-4199
DOI:10.1016/j.neuron.2013.11.022