Loading…
Interquantile shrinkage and variable selection in quantile regression
Examination of multiple conditional quantile functions provides a comprehensive view of the relationship between the response and covariates. In situations where quantile slope coefficients share some common features, estimation efficiency and model interpretability can be improved by utilizing such...
Saved in:
Published in: | Computational statistics & data analysis 2014-01, Vol.69, p.208-219 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c521t-7a8b0cff3a6d7d5cd40e9ec91930052874a0bffdd3ef72905a59cce9d5cba6c33 |
---|---|
cites | cdi_FETCH-LOGICAL-c521t-7a8b0cff3a6d7d5cd40e9ec91930052874a0bffdd3ef72905a59cce9d5cba6c33 |
container_end_page | 219 |
container_issue | |
container_start_page | 208 |
container_title | Computational statistics & data analysis |
container_volume | 69 |
creator | Jiang, Liewen Bondell, Howard D. Wang, Huixia Judy |
description | Examination of multiple conditional quantile functions provides a comprehensive view of the relationship between the response and covariates. In situations where quantile slope coefficients share some common features, estimation efficiency and model interpretability can be improved by utilizing such commonality across quantiles. Furthermore, elimination of irrelevant predictors will also aid in estimation and interpretation. These motivations lead to the development of two penalization methods, which can identify the interquantile commonality and nonzero quantile coefficients simultaneously. The developed methods are based on a fused penalty that encourages sparsity of both quantile coefficients and interquantile slope differences. The oracle properties of the proposed penalization methods are established. Through numerical investigations, it is demonstrated that the proposed methods lead to simpler model structure and higher estimation efficiency than the traditional quantile regression estimation. |
doi_str_mv | 10.1016/j.csda.2013.08.006 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3956083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947313002922</els_id><sourcerecordid>1826593467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-7a8b0cff3a6d7d5cd40e9ec91930052874a0bffdd3ef72905a59cce9d5cba6c33</originalsourceid><addsrcrecordid>eNqFkcFq3DAQhkVoSbZJXqCH4mMvdkeSZUlQCiWkaSDQS3sWsjTeaOuVE8m7kLevzCZLe2lOgtE3PzPzEfKeQkOBdp82jcveNgwob0A1AN0JWVElWS25YG_IqkCy1q3kZ-RdzhsAYK1Up-SMtZ3gohUrcn0bZ0yPOxvnMGKV71OIv-0aKxt9tbcp2H4p44huDlOsQqyOcMJ1wpxL-YK8HeyY8fL5PSe_vl3_vPpe3_24ub36elc7wehcS6t6cMPAbeelF863gBqdppoDCKZka6EfBu85DpJpEFZo51AXtLed4_ycfDnkPuz6LXqHcU52NA8pbG16MpMN5t-fGO7NetobrkUHagn4-ByQpscd5tlsQ3Y4jjbitMuGMcEZo1ypV1GqWCc0bzv5OtpJ2qqyoS4oO6AuTTknHI7DUzCLVbMxi1WzWDWgTLFamj78vfax5UVjAT4fACzH3wdMJruA0aEPqYgzfgr_y_8D9bO1Mw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671480529</pqid></control><display><type>article</type><title>Interquantile shrinkage and variable selection in quantile regression</title><source>ScienceDirect Freedom Collection</source><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Jiang, Liewen ; Bondell, Howard D. ; Wang, Huixia Judy</creator><creatorcontrib>Jiang, Liewen ; Bondell, Howard D. ; Wang, Huixia Judy</creatorcontrib><description>Examination of multiple conditional quantile functions provides a comprehensive view of the relationship between the response and covariates. In situations where quantile slope coefficients share some common features, estimation efficiency and model interpretability can be improved by utilizing such commonality across quantiles. Furthermore, elimination of irrelevant predictors will also aid in estimation and interpretation. These motivations lead to the development of two penalization methods, which can identify the interquantile commonality and nonzero quantile coefficients simultaneously. The developed methods are based on a fused penalty that encourages sparsity of both quantile coefficients and interquantile slope differences. The oracle properties of the proposed penalization methods are established. Through numerical investigations, it is demonstrated that the proposed methods lead to simpler model structure and higher estimation efficiency than the traditional quantile regression estimation.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2013.08.006</identifier><identifier>PMID: 24653545</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Commonality ; Data processing ; Fused adaptive Lasso ; Fused adaptive sup-norm ; Mathematical analysis ; Mathematical models ; motivation ; Oracle ; Quantile regression ; Quantiles ; Regression ; regression analysis ; Shrinkage ; Smoothing ; Statistics ; Variable selection</subject><ispartof>Computational statistics & data analysis, 2014-01, Vol.69, p.208-219</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-7a8b0cff3a6d7d5cd40e9ec91930052874a0bffdd3ef72905a59cce9d5cba6c33</citedby><cites>FETCH-LOGICAL-c521t-7a8b0cff3a6d7d5cd40e9ec91930052874a0bffdd3ef72905a59cce9d5cba6c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947313002922$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3416,3427,3551,27903,27904,45951,45970,45981</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24653545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Liewen</creatorcontrib><creatorcontrib>Bondell, Howard D.</creatorcontrib><creatorcontrib>Wang, Huixia Judy</creatorcontrib><title>Interquantile shrinkage and variable selection in quantile regression</title><title>Computational statistics & data analysis</title><addtitle>Comput Stat Data Anal</addtitle><description>Examination of multiple conditional quantile functions provides a comprehensive view of the relationship between the response and covariates. In situations where quantile slope coefficients share some common features, estimation efficiency and model interpretability can be improved by utilizing such commonality across quantiles. Furthermore, elimination of irrelevant predictors will also aid in estimation and interpretation. These motivations lead to the development of two penalization methods, which can identify the interquantile commonality and nonzero quantile coefficients simultaneously. The developed methods are based on a fused penalty that encourages sparsity of both quantile coefficients and interquantile slope differences. The oracle properties of the proposed penalization methods are established. Through numerical investigations, it is demonstrated that the proposed methods lead to simpler model structure and higher estimation efficiency than the traditional quantile regression estimation.</description><subject>Commonality</subject><subject>Data processing</subject><subject>Fused adaptive Lasso</subject><subject>Fused adaptive sup-norm</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>motivation</subject><subject>Oracle</subject><subject>Quantile regression</subject><subject>Quantiles</subject><subject>Regression</subject><subject>regression analysis</subject><subject>Shrinkage</subject><subject>Smoothing</subject><subject>Statistics</subject><subject>Variable selection</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkcFq3DAQhkVoSbZJXqCH4mMvdkeSZUlQCiWkaSDQS3sWsjTeaOuVE8m7kLevzCZLe2lOgtE3PzPzEfKeQkOBdp82jcveNgwob0A1AN0JWVElWS25YG_IqkCy1q3kZ-RdzhsAYK1Up-SMtZ3gohUrcn0bZ0yPOxvnMGKV71OIv-0aKxt9tbcp2H4p44huDlOsQqyOcMJ1wpxL-YK8HeyY8fL5PSe_vl3_vPpe3_24ub36elc7wehcS6t6cMPAbeelF863gBqdppoDCKZka6EfBu85DpJpEFZo51AXtLed4_ycfDnkPuz6LXqHcU52NA8pbG16MpMN5t-fGO7NetobrkUHagn4-ByQpscd5tlsQ3Y4jjbitMuGMcEZo1ypV1GqWCc0bzv5OtpJ2qqyoS4oO6AuTTknHI7DUzCLVbMxi1WzWDWgTLFamj78vfax5UVjAT4fACzH3wdMJruA0aEPqYgzfgr_y_8D9bO1Mw</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Jiang, Liewen</creator><creator>Bondell, Howard D.</creator><creator>Wang, Huixia Judy</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Interquantile shrinkage and variable selection in quantile regression</title><author>Jiang, Liewen ; Bondell, Howard D. ; Wang, Huixia Judy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-7a8b0cff3a6d7d5cd40e9ec91930052874a0bffdd3ef72905a59cce9d5cba6c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Commonality</topic><topic>Data processing</topic><topic>Fused adaptive Lasso</topic><topic>Fused adaptive sup-norm</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>motivation</topic><topic>Oracle</topic><topic>Quantile regression</topic><topic>Quantiles</topic><topic>Regression</topic><topic>regression analysis</topic><topic>Shrinkage</topic><topic>Smoothing</topic><topic>Statistics</topic><topic>Variable selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Liewen</creatorcontrib><creatorcontrib>Bondell, Howard D.</creatorcontrib><creatorcontrib>Wang, Huixia Judy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational statistics & data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Liewen</au><au>Bondell, Howard D.</au><au>Wang, Huixia Judy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interquantile shrinkage and variable selection in quantile regression</atitle><jtitle>Computational statistics & data analysis</jtitle><addtitle>Comput Stat Data Anal</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>69</volume><spage>208</spage><epage>219</epage><pages>208-219</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>Examination of multiple conditional quantile functions provides a comprehensive view of the relationship between the response and covariates. In situations where quantile slope coefficients share some common features, estimation efficiency and model interpretability can be improved by utilizing such commonality across quantiles. Furthermore, elimination of irrelevant predictors will also aid in estimation and interpretation. These motivations lead to the development of two penalization methods, which can identify the interquantile commonality and nonzero quantile coefficients simultaneously. The developed methods are based on a fused penalty that encourages sparsity of both quantile coefficients and interquantile slope differences. The oracle properties of the proposed penalization methods are established. Through numerical investigations, it is demonstrated that the proposed methods lead to simpler model structure and higher estimation efficiency than the traditional quantile regression estimation.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>24653545</pmid><doi>10.1016/j.csda.2013.08.006</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9473 |
ispartof | Computational statistics & data analysis, 2014-01, Vol.69, p.208-219 |
issn | 0167-9473 1872-7352 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3956083 |
source | ScienceDirect Freedom Collection; ScienceDirect Journals; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Commonality Data processing Fused adaptive Lasso Fused adaptive sup-norm Mathematical analysis Mathematical models motivation Oracle Quantile regression Quantiles Regression regression analysis Shrinkage Smoothing Statistics Variable selection |
title | Interquantile shrinkage and variable selection in quantile regression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interquantile%20shrinkage%20and%20variable%20selection%20in%20quantile%20regression&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Jiang,%20Liewen&rft.date=2014-01-01&rft.volume=69&rft.spage=208&rft.epage=219&rft.pages=208-219&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2013.08.006&rft_dat=%3Cproquest_pubme%3E1826593467%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-7a8b0cff3a6d7d5cd40e9ec91930052874a0bffdd3ef72905a59cce9d5cba6c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671480529&rft_id=info:pmid/24653545&rfr_iscdi=true |