Loading…

Interquantile shrinkage and variable selection in quantile regression

Examination of multiple conditional quantile functions provides a comprehensive view of the relationship between the response and covariates. In situations where quantile slope coefficients share some common features, estimation efficiency and model interpretability can be improved by utilizing such...

Full description

Saved in:
Bibliographic Details
Published in:Computational statistics & data analysis 2014-01, Vol.69, p.208-219
Main Authors: Jiang, Liewen, Bondell, Howard D., Wang, Huixia Judy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c521t-7a8b0cff3a6d7d5cd40e9ec91930052874a0bffdd3ef72905a59cce9d5cba6c33
cites cdi_FETCH-LOGICAL-c521t-7a8b0cff3a6d7d5cd40e9ec91930052874a0bffdd3ef72905a59cce9d5cba6c33
container_end_page 219
container_issue
container_start_page 208
container_title Computational statistics & data analysis
container_volume 69
creator Jiang, Liewen
Bondell, Howard D.
Wang, Huixia Judy
description Examination of multiple conditional quantile functions provides a comprehensive view of the relationship between the response and covariates. In situations where quantile slope coefficients share some common features, estimation efficiency and model interpretability can be improved by utilizing such commonality across quantiles. Furthermore, elimination of irrelevant predictors will also aid in estimation and interpretation. These motivations lead to the development of two penalization methods, which can identify the interquantile commonality and nonzero quantile coefficients simultaneously. The developed methods are based on a fused penalty that encourages sparsity of both quantile coefficients and interquantile slope differences. The oracle properties of the proposed penalization methods are established. Through numerical investigations, it is demonstrated that the proposed methods lead to simpler model structure and higher estimation efficiency than the traditional quantile regression estimation.
doi_str_mv 10.1016/j.csda.2013.08.006
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3956083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947313002922</els_id><sourcerecordid>1826593467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-7a8b0cff3a6d7d5cd40e9ec91930052874a0bffdd3ef72905a59cce9d5cba6c33</originalsourceid><addsrcrecordid>eNqFkcFq3DAQhkVoSbZJXqCH4mMvdkeSZUlQCiWkaSDQS3sWsjTeaOuVE8m7kLevzCZLe2lOgtE3PzPzEfKeQkOBdp82jcveNgwob0A1AN0JWVElWS25YG_IqkCy1q3kZ-RdzhsAYK1Up-SMtZ3gohUrcn0bZ0yPOxvnMGKV71OIv-0aKxt9tbcp2H4p44huDlOsQqyOcMJ1wpxL-YK8HeyY8fL5PSe_vl3_vPpe3_24ub36elc7wehcS6t6cMPAbeelF863gBqdppoDCKZka6EfBu85DpJpEFZo51AXtLed4_ycfDnkPuz6LXqHcU52NA8pbG16MpMN5t-fGO7NetobrkUHagn4-ByQpscd5tlsQ3Y4jjbitMuGMcEZo1ypV1GqWCc0bzv5OtpJ2qqyoS4oO6AuTTknHI7DUzCLVbMxi1WzWDWgTLFamj78vfax5UVjAT4fACzH3wdMJruA0aEPqYgzfgr_y_8D9bO1Mw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671480529</pqid></control><display><type>article</type><title>Interquantile shrinkage and variable selection in quantile regression</title><source>ScienceDirect Freedom Collection</source><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Jiang, Liewen ; Bondell, Howard D. ; Wang, Huixia Judy</creator><creatorcontrib>Jiang, Liewen ; Bondell, Howard D. ; Wang, Huixia Judy</creatorcontrib><description>Examination of multiple conditional quantile functions provides a comprehensive view of the relationship between the response and covariates. In situations where quantile slope coefficients share some common features, estimation efficiency and model interpretability can be improved by utilizing such commonality across quantiles. Furthermore, elimination of irrelevant predictors will also aid in estimation and interpretation. These motivations lead to the development of two penalization methods, which can identify the interquantile commonality and nonzero quantile coefficients simultaneously. The developed methods are based on a fused penalty that encourages sparsity of both quantile coefficients and interquantile slope differences. The oracle properties of the proposed penalization methods are established. Through numerical investigations, it is demonstrated that the proposed methods lead to simpler model structure and higher estimation efficiency than the traditional quantile regression estimation.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2013.08.006</identifier><identifier>PMID: 24653545</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Commonality ; Data processing ; Fused adaptive Lasso ; Fused adaptive sup-norm ; Mathematical analysis ; Mathematical models ; motivation ; Oracle ; Quantile regression ; Quantiles ; Regression ; regression analysis ; Shrinkage ; Smoothing ; Statistics ; Variable selection</subject><ispartof>Computational statistics &amp; data analysis, 2014-01, Vol.69, p.208-219</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-7a8b0cff3a6d7d5cd40e9ec91930052874a0bffdd3ef72905a59cce9d5cba6c33</citedby><cites>FETCH-LOGICAL-c521t-7a8b0cff3a6d7d5cd40e9ec91930052874a0bffdd3ef72905a59cce9d5cba6c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947313002922$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3416,3427,3551,27903,27904,45951,45970,45981</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24653545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Liewen</creatorcontrib><creatorcontrib>Bondell, Howard D.</creatorcontrib><creatorcontrib>Wang, Huixia Judy</creatorcontrib><title>Interquantile shrinkage and variable selection in quantile regression</title><title>Computational statistics &amp; data analysis</title><addtitle>Comput Stat Data Anal</addtitle><description>Examination of multiple conditional quantile functions provides a comprehensive view of the relationship between the response and covariates. In situations where quantile slope coefficients share some common features, estimation efficiency and model interpretability can be improved by utilizing such commonality across quantiles. Furthermore, elimination of irrelevant predictors will also aid in estimation and interpretation. These motivations lead to the development of two penalization methods, which can identify the interquantile commonality and nonzero quantile coefficients simultaneously. The developed methods are based on a fused penalty that encourages sparsity of both quantile coefficients and interquantile slope differences. The oracle properties of the proposed penalization methods are established. Through numerical investigations, it is demonstrated that the proposed methods lead to simpler model structure and higher estimation efficiency than the traditional quantile regression estimation.</description><subject>Commonality</subject><subject>Data processing</subject><subject>Fused adaptive Lasso</subject><subject>Fused adaptive sup-norm</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>motivation</subject><subject>Oracle</subject><subject>Quantile regression</subject><subject>Quantiles</subject><subject>Regression</subject><subject>regression analysis</subject><subject>Shrinkage</subject><subject>Smoothing</subject><subject>Statistics</subject><subject>Variable selection</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkcFq3DAQhkVoSbZJXqCH4mMvdkeSZUlQCiWkaSDQS3sWsjTeaOuVE8m7kLevzCZLe2lOgtE3PzPzEfKeQkOBdp82jcveNgwob0A1AN0JWVElWS25YG_IqkCy1q3kZ-RdzhsAYK1Up-SMtZ3gohUrcn0bZ0yPOxvnMGKV71OIv-0aKxt9tbcp2H4p44huDlOsQqyOcMJ1wpxL-YK8HeyY8fL5PSe_vl3_vPpe3_24ub36elc7wehcS6t6cMPAbeelF863gBqdppoDCKZka6EfBu85DpJpEFZo51AXtLed4_ycfDnkPuz6LXqHcU52NA8pbG16MpMN5t-fGO7NetobrkUHagn4-ByQpscd5tlsQ3Y4jjbitMuGMcEZo1ypV1GqWCc0bzv5OtpJ2qqyoS4oO6AuTTknHI7DUzCLVbMxi1WzWDWgTLFamj78vfax5UVjAT4fACzH3wdMJruA0aEPqYgzfgr_y_8D9bO1Mw</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Jiang, Liewen</creator><creator>Bondell, Howard D.</creator><creator>Wang, Huixia Judy</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Interquantile shrinkage and variable selection in quantile regression</title><author>Jiang, Liewen ; Bondell, Howard D. ; Wang, Huixia Judy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-7a8b0cff3a6d7d5cd40e9ec91930052874a0bffdd3ef72905a59cce9d5cba6c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Commonality</topic><topic>Data processing</topic><topic>Fused adaptive Lasso</topic><topic>Fused adaptive sup-norm</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>motivation</topic><topic>Oracle</topic><topic>Quantile regression</topic><topic>Quantiles</topic><topic>Regression</topic><topic>regression analysis</topic><topic>Shrinkage</topic><topic>Smoothing</topic><topic>Statistics</topic><topic>Variable selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Liewen</creatorcontrib><creatorcontrib>Bondell, Howard D.</creatorcontrib><creatorcontrib>Wang, Huixia Judy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Liewen</au><au>Bondell, Howard D.</au><au>Wang, Huixia Judy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interquantile shrinkage and variable selection in quantile regression</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><addtitle>Comput Stat Data Anal</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>69</volume><spage>208</spage><epage>219</epage><pages>208-219</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>Examination of multiple conditional quantile functions provides a comprehensive view of the relationship between the response and covariates. In situations where quantile slope coefficients share some common features, estimation efficiency and model interpretability can be improved by utilizing such commonality across quantiles. Furthermore, elimination of irrelevant predictors will also aid in estimation and interpretation. These motivations lead to the development of two penalization methods, which can identify the interquantile commonality and nonzero quantile coefficients simultaneously. The developed methods are based on a fused penalty that encourages sparsity of both quantile coefficients and interquantile slope differences. The oracle properties of the proposed penalization methods are established. Through numerical investigations, it is demonstrated that the proposed methods lead to simpler model structure and higher estimation efficiency than the traditional quantile regression estimation.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>24653545</pmid><doi>10.1016/j.csda.2013.08.006</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2014-01, Vol.69, p.208-219
issn 0167-9473
1872-7352
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3956083
source ScienceDirect Freedom Collection; ScienceDirect Journals; Backfile Package - Mathematics (Legacy) [YMT]
subjects Commonality
Data processing
Fused adaptive Lasso
Fused adaptive sup-norm
Mathematical analysis
Mathematical models
motivation
Oracle
Quantile regression
Quantiles
Regression
regression analysis
Shrinkage
Smoothing
Statistics
Variable selection
title Interquantile shrinkage and variable selection in quantile regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interquantile%20shrinkage%20and%20variable%20selection%20in%20quantile%20regression&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Jiang,%20Liewen&rft.date=2014-01-01&rft.volume=69&rft.spage=208&rft.epage=219&rft.pages=208-219&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2013.08.006&rft_dat=%3Cproquest_pubme%3E1826593467%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-7a8b0cff3a6d7d5cd40e9ec91930052874a0bffdd3ef72905a59cce9d5cba6c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671480529&rft_id=info:pmid/24653545&rfr_iscdi=true