Loading…

193 nm Ultraviolet Photodissociation Mass Spectrometry for the Structural Elucidation of Lipid A Compounds in Complex Mixtures

Here we implement ultraviolet photodissociation (UVPD) in an online liquid chromatographic tandem mass spectrometry (MS/MS) strategy to support analysis of complex mixtures of lipid A combinatorially modified during development of vaccine adjuvants. UVPD mass spectrometry at 193 nm was utilized to c...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2014-02, Vol.86 (4), p.2138-2145
Main Authors: O’Brien, John P, Needham, Brittany D, Henderson, Jeremy C, Nowicki, Emily M, Trent, M. Stephen, Brodbelt, Jennifer S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Here we implement ultraviolet photodissociation (UVPD) in an online liquid chromatographic tandem mass spectrometry (MS/MS) strategy to support analysis of complex mixtures of lipid A combinatorially modified during development of vaccine adjuvants. UVPD mass spectrometry at 193 nm was utilized to characterize the structures and fragment ion types of lipid A from Escherichia coli, Vibrio cholerae, and Pseudomonas aeruginosa using an Orbitrap mass spectrometer. The fragment ions generated by UVPD were compared to those from collision induced dissociation (CID) and higher energy collision dissociation (HCD) with respect to the precursor charge state. UVPD afforded the widest array of fragment ion types including acyl chain C–O, C–N, and C–C bond cleavages and glycosidic C–O and cross ring cleavages, thus providing the most comprehensive structural analysis of the lipid A. UVPD exhibited virtually no dependence on precursor ion charge state and was best at determining lipid A structure including acyl chain length and composition, giving it an advantage over collision based methods. UVPD was incorporated into an LC–MS/MS methodology for the analysis of a number of structural variants in a complex mixture of combinatorially engineered Escherichia coli lipid A.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac403796n