Loading…

FUT11 as a potential biomarker of clear cell renal cell carcinoma progression based on meta-analysis of gene expression data

In this paper, we provide a comprehensive summary of available clear cell renal cell carcinoma (ccRCC) microarray data in the form of meta-analysis of genes differentially regulated in tumors as compared to healthy tissue, using effect size to measure the strength of a relationship between the disea...

Full description

Saved in:
Bibliographic Details
Published in:Tumor biology 2014-03, Vol.35 (3), p.2607-2617
Main Authors: Zodro, Elżbieta, Jaroszewski, Marcin, Ida, Agnieszka, Wrzesiński, Tomasz, Kwias, Zbigniew, Bluyssen, Hans, Wesoly, Joanna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c569t-9e7774c4b48f0e2a66a0918215b40b9299bb7b86843346d8677519bc3e0427cb3
cites cdi_FETCH-LOGICAL-c569t-9e7774c4b48f0e2a66a0918215b40b9299bb7b86843346d8677519bc3e0427cb3
container_end_page 2617
container_issue 3
container_start_page 2607
container_title Tumor biology
container_volume 35
creator Zodro, Elżbieta
Jaroszewski, Marcin
Ida, Agnieszka
Wrzesiński, Tomasz
Kwias, Zbigniew
Bluyssen, Hans
Wesoly, Joanna
description In this paper, we provide a comprehensive summary of available clear cell renal cell carcinoma (ccRCC) microarray data in the form of meta-analysis of genes differentially regulated in tumors as compared to healthy tissue, using effect size to measure the strength of a relationship between the disease and gene expression. We identified 725 differentially regulated genes, with a number of interesting targets, such as TMEM213 , SMIM5 , or ATPases: ATP6V0A4 and ATP6V1G3 , of which limited or no information is available in terms of their function in ccRCC pathology. Downregulated genes tended to represent pathways related to tissue remodeling, blood clotting, vasodilation, and energy metabolism, while upregulated genes were classified into pathways generally deregulated in cancers: immune system response, inflammatory response, angiogenesis, and apoptosis. One hundred fifteen deregulated genes were included in network analysis, with EGLN3 , AP-2 , NR3C1 , HIF1A , and EPAS1 (gene encoding HIF2-α) as points of functional convergence, but, interestingly, 610 genes failed to join previously identified molecular networks. Furthermore, we validated the expression of 14 top deregulated genes in independent sample set of 32 ccRCC tumors by qPCR and tested if it could serve as a marker of disease progression. We found a correlation of high fucosyltransferase 11 ( FUT11 ) expression with non-symptomatic course of the disease, which suggests that FUT11 's expression might be potentially used as a biomarker of disease progression.
doi_str_mv 10.1007/s13277-013-1344-4
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3967067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1639989348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c569t-9e7774c4b48f0e2a66a0918215b40b9299bb7b86843346d8677519bc3e0427cb3</originalsourceid><addsrcrecordid>eNqFkk1rFTEUhgdR7If-ADcScOMmmpNk8rERpFgrFNy065DknntNnTsZk7nFgj_eTG9bqiCucuA85z0febvuFbB3wJh-X0FwrSkDQUFISeWT7hAkF5QJw562mAGjkhtx0B3VesUY9Naq590BlwKMNeaw-3V6eQFAfCWeTHnGcU5-ICHlrS_fsZC8JnFAX0jEYSAFx5a9DaMvMY0NI1PJm4K1pjyS4CuuSAu2OHvqG31TU11UNjgiwZ_TPbnys3_RPVv7oeLLu_e4uzz9dHFyRs-_fv5y8vGcxl7ZmVrUWssogzRrhtwr5ZkFw6EPkgXLrQ1BB6OMFEKqlVFa92BDFMgk1zGI4-7DXnfahS2uYtuy-MFNJbUtb1z2yf2ZGdM3t8nXTlilmdJN4O2dQMk_dlhnt011OYMfMe-qAyWsNVZI83-0BxC2Z_2i-uYv9CrvSrvZLcWEbu1Vo2BPxZJrLbh-mBuYW2zg9jZwzQZusYGTreb144UfKu7_vQF8D9SWGjdYHrX-p-pvy6u9Ng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510373966</pqid></control><display><type>article</type><title>FUT11 as a potential biomarker of clear cell renal cell carcinoma progression based on meta-analysis of gene expression data</title><source>Publicly Available Content Database</source><creator>Zodro, Elżbieta ; Jaroszewski, Marcin ; Ida, Agnieszka ; Wrzesiński, Tomasz ; Kwias, Zbigniew ; Bluyssen, Hans ; Wesoly, Joanna</creator><creatorcontrib>Zodro, Elżbieta ; Jaroszewski, Marcin ; Ida, Agnieszka ; Wrzesiński, Tomasz ; Kwias, Zbigniew ; Bluyssen, Hans ; Wesoly, Joanna</creatorcontrib><description>In this paper, we provide a comprehensive summary of available clear cell renal cell carcinoma (ccRCC) microarray data in the form of meta-analysis of genes differentially regulated in tumors as compared to healthy tissue, using effect size to measure the strength of a relationship between the disease and gene expression. We identified 725 differentially regulated genes, with a number of interesting targets, such as TMEM213 , SMIM5 , or ATPases: ATP6V0A4 and ATP6V1G3 , of which limited or no information is available in terms of their function in ccRCC pathology. Downregulated genes tended to represent pathways related to tissue remodeling, blood clotting, vasodilation, and energy metabolism, while upregulated genes were classified into pathways generally deregulated in cancers: immune system response, inflammatory response, angiogenesis, and apoptosis. One hundred fifteen deregulated genes were included in network analysis, with EGLN3 , AP-2 , NR3C1 , HIF1A , and EPAS1 (gene encoding HIF2-α) as points of functional convergence, but, interestingly, 610 genes failed to join previously identified molecular networks. Furthermore, we validated the expression of 14 top deregulated genes in independent sample set of 32 ccRCC tumors by qPCR and tested if it could serve as a marker of disease progression. We found a correlation of high fucosyltransferase 11 ( FUT11 ) expression with non-symptomatic course of the disease, which suggests that FUT11 's expression might be potentially used as a biomarker of disease progression.</description><identifier>ISSN: 1010-4283</identifier><identifier>EISSN: 1423-0380</identifier><identifier>DOI: 10.1007/s13277-013-1344-4</identifier><identifier>PMID: 24318988</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biomarkers ; Biomarkers, Tumor - analysis ; Biomarkers, Tumor - genetics ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Carcinoma, Renal Cell - genetics ; Disease Progression ; Fucosyltransferases - genetics ; Gene expression ; Humans ; Kidney cancer ; Kidney Neoplasms - genetics ; Meta-analysis ; Oligonucleotide Array Sequence Analysis ; Polymerase Chain Reaction ; Research Article ; Transcriptome</subject><ispartof>Tumor biology, 2014-03, Vol.35 (3), p.2607-2617</ispartof><rights>The Author(s) 2013</rights><rights>International Society of Oncology and BioMarkers (ISOBM) 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c569t-9e7774c4b48f0e2a66a0918215b40b9299bb7b86843346d8677519bc3e0427cb3</citedby><cites>FETCH-LOGICAL-c569t-9e7774c4b48f0e2a66a0918215b40b9299bb7b86843346d8677519bc3e0427cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1510373966?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24318988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zodro, Elżbieta</creatorcontrib><creatorcontrib>Jaroszewski, Marcin</creatorcontrib><creatorcontrib>Ida, Agnieszka</creatorcontrib><creatorcontrib>Wrzesiński, Tomasz</creatorcontrib><creatorcontrib>Kwias, Zbigniew</creatorcontrib><creatorcontrib>Bluyssen, Hans</creatorcontrib><creatorcontrib>Wesoly, Joanna</creatorcontrib><title>FUT11 as a potential biomarker of clear cell renal cell carcinoma progression based on meta-analysis of gene expression data</title><title>Tumor biology</title><addtitle>Tumor Biol</addtitle><addtitle>Tumour Biol</addtitle><description>In this paper, we provide a comprehensive summary of available clear cell renal cell carcinoma (ccRCC) microarray data in the form of meta-analysis of genes differentially regulated in tumors as compared to healthy tissue, using effect size to measure the strength of a relationship between the disease and gene expression. We identified 725 differentially regulated genes, with a number of interesting targets, such as TMEM213 , SMIM5 , or ATPases: ATP6V0A4 and ATP6V1G3 , of which limited or no information is available in terms of their function in ccRCC pathology. Downregulated genes tended to represent pathways related to tissue remodeling, blood clotting, vasodilation, and energy metabolism, while upregulated genes were classified into pathways generally deregulated in cancers: immune system response, inflammatory response, angiogenesis, and apoptosis. One hundred fifteen deregulated genes were included in network analysis, with EGLN3 , AP-2 , NR3C1 , HIF1A , and EPAS1 (gene encoding HIF2-α) as points of functional convergence, but, interestingly, 610 genes failed to join previously identified molecular networks. Furthermore, we validated the expression of 14 top deregulated genes in independent sample set of 32 ccRCC tumors by qPCR and tested if it could serve as a marker of disease progression. We found a correlation of high fucosyltransferase 11 ( FUT11 ) expression with non-symptomatic course of the disease, which suggests that FUT11 's expression might be potentially used as a biomarker of disease progression.</description><subject>Biomarkers</subject><subject>Biomarkers, Tumor - analysis</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Carcinoma, Renal Cell - genetics</subject><subject>Disease Progression</subject><subject>Fucosyltransferases - genetics</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Kidney cancer</subject><subject>Kidney Neoplasms - genetics</subject><subject>Meta-analysis</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Polymerase Chain Reaction</subject><subject>Research Article</subject><subject>Transcriptome</subject><issn>1010-4283</issn><issn>1423-0380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkk1rFTEUhgdR7If-ADcScOMmmpNk8rERpFgrFNy065DknntNnTsZk7nFgj_eTG9bqiCucuA85z0febvuFbB3wJh-X0FwrSkDQUFISeWT7hAkF5QJw562mAGjkhtx0B3VesUY9Naq590BlwKMNeaw-3V6eQFAfCWeTHnGcU5-ICHlrS_fsZC8JnFAX0jEYSAFx5a9DaMvMY0NI1PJm4K1pjyS4CuuSAu2OHvqG31TU11UNjgiwZ_TPbnys3_RPVv7oeLLu_e4uzz9dHFyRs-_fv5y8vGcxl7ZmVrUWssogzRrhtwr5ZkFw6EPkgXLrQ1BB6OMFEKqlVFa92BDFMgk1zGI4-7DXnfahS2uYtuy-MFNJbUtb1z2yf2ZGdM3t8nXTlilmdJN4O2dQMk_dlhnt011OYMfMe-qAyWsNVZI83-0BxC2Z_2i-uYv9CrvSrvZLcWEbu1Vo2BPxZJrLbh-mBuYW2zg9jZwzQZusYGTreb144UfKu7_vQF8D9SWGjdYHrX-p-pvy6u9Ng</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Zodro, Elżbieta</creator><creator>Jaroszewski, Marcin</creator><creator>Ida, Agnieszka</creator><creator>Wrzesiński, Tomasz</creator><creator>Kwias, Zbigniew</creator><creator>Bluyssen, Hans</creator><creator>Wesoly, Joanna</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20140301</creationdate><title>FUT11 as a potential biomarker of clear cell renal cell carcinoma progression based on meta-analysis of gene expression data</title><author>Zodro, Elżbieta ; Jaroszewski, Marcin ; Ida, Agnieszka ; Wrzesiński, Tomasz ; Kwias, Zbigniew ; Bluyssen, Hans ; Wesoly, Joanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c569t-9e7774c4b48f0e2a66a0918215b40b9299bb7b86843346d8677519bc3e0427cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biomarkers</topic><topic>Biomarkers, Tumor - analysis</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Carcinoma, Renal Cell - genetics</topic><topic>Disease Progression</topic><topic>Fucosyltransferases - genetics</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Kidney cancer</topic><topic>Kidney Neoplasms - genetics</topic><topic>Meta-analysis</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Polymerase Chain Reaction</topic><topic>Research Article</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zodro, Elżbieta</creatorcontrib><creatorcontrib>Jaroszewski, Marcin</creatorcontrib><creatorcontrib>Ida, Agnieszka</creatorcontrib><creatorcontrib>Wrzesiński, Tomasz</creatorcontrib><creatorcontrib>Kwias, Zbigniew</creatorcontrib><creatorcontrib>Bluyssen, Hans</creatorcontrib><creatorcontrib>Wesoly, Joanna</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Tumor biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zodro, Elżbieta</au><au>Jaroszewski, Marcin</au><au>Ida, Agnieszka</au><au>Wrzesiński, Tomasz</au><au>Kwias, Zbigniew</au><au>Bluyssen, Hans</au><au>Wesoly, Joanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FUT11 as a potential biomarker of clear cell renal cell carcinoma progression based on meta-analysis of gene expression data</atitle><jtitle>Tumor biology</jtitle><stitle>Tumor Biol</stitle><addtitle>Tumour Biol</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>35</volume><issue>3</issue><spage>2607</spage><epage>2617</epage><pages>2607-2617</pages><issn>1010-4283</issn><eissn>1423-0380</eissn><abstract>In this paper, we provide a comprehensive summary of available clear cell renal cell carcinoma (ccRCC) microarray data in the form of meta-analysis of genes differentially regulated in tumors as compared to healthy tissue, using effect size to measure the strength of a relationship between the disease and gene expression. We identified 725 differentially regulated genes, with a number of interesting targets, such as TMEM213 , SMIM5 , or ATPases: ATP6V0A4 and ATP6V1G3 , of which limited or no information is available in terms of their function in ccRCC pathology. Downregulated genes tended to represent pathways related to tissue remodeling, blood clotting, vasodilation, and energy metabolism, while upregulated genes were classified into pathways generally deregulated in cancers: immune system response, inflammatory response, angiogenesis, and apoptosis. One hundred fifteen deregulated genes were included in network analysis, with EGLN3 , AP-2 , NR3C1 , HIF1A , and EPAS1 (gene encoding HIF2-α) as points of functional convergence, but, interestingly, 610 genes failed to join previously identified molecular networks. Furthermore, we validated the expression of 14 top deregulated genes in independent sample set of 32 ccRCC tumors by qPCR and tested if it could serve as a marker of disease progression. We found a correlation of high fucosyltransferase 11 ( FUT11 ) expression with non-symptomatic course of the disease, which suggests that FUT11 's expression might be potentially used as a biomarker of disease progression.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>24318988</pmid><doi>10.1007/s13277-013-1344-4</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1010-4283
ispartof Tumor biology, 2014-03, Vol.35 (3), p.2607-2617
issn 1010-4283
1423-0380
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3967067
source Publicly Available Content Database
subjects Biomarkers
Biomarkers, Tumor - analysis
Biomarkers, Tumor - genetics
Biomedical and Life Sciences
Biomedicine
Cancer Research
Carcinoma, Renal Cell - genetics
Disease Progression
Fucosyltransferases - genetics
Gene expression
Humans
Kidney cancer
Kidney Neoplasms - genetics
Meta-analysis
Oligonucleotide Array Sequence Analysis
Polymerase Chain Reaction
Research Article
Transcriptome
title FUT11 as a potential biomarker of clear cell renal cell carcinoma progression based on meta-analysis of gene expression data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FUT11%20as%20a%20potential%20biomarker%20of%20clear%20cell%20renal%20cell%20carcinoma%20progression%20based%20on%20meta-analysis%20of%20gene%20expression%20data&rft.jtitle=Tumor%20biology&rft.au=Zodro,%20El%C5%BCbieta&rft.date=2014-03-01&rft.volume=35&rft.issue=3&rft.spage=2607&rft.epage=2617&rft.pages=2607-2617&rft.issn=1010-4283&rft.eissn=1423-0380&rft_id=info:doi/10.1007/s13277-013-1344-4&rft_dat=%3Cproquest_pubme%3E1639989348%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c569t-9e7774c4b48f0e2a66a0918215b40b9299bb7b86843346d8677519bc3e0427cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1510373966&rft_id=info:pmid/24318988&rfr_iscdi=true