Loading…

Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner

The induction of apoptosis in cancer cells is a therapeutic strategy for the treatment of cancer. In the present study, we investigated the regulatory mechanisms responsible for quercetin-induced apoptosis, mamely the increased expression of sestrin 2 and the activation of the 5′ AMP-activated prote...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular medicine 2014-04, Vol.33 (4), p.863-869
Main Authors: KIM, GUEN TAE, LEE, SE HEE, KIM, JONG IL, KIM, YOUNG MIN
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c584t-4f774b4bf892df7cf665dd8557640c5bb2ba64eb84f187e0a00bc702dd860b273
cites cdi_FETCH-LOGICAL-c584t-4f774b4bf892df7cf665dd8557640c5bb2ba64eb84f187e0a00bc702dd860b273
container_end_page 869
container_issue 4
container_start_page 863
container_title International journal of molecular medicine
container_volume 33
creator KIM, GUEN TAE
LEE, SE HEE
KIM, JONG IL
KIM, YOUNG MIN
description The induction of apoptosis in cancer cells is a therapeutic strategy for the treatment of cancer. In the present study, we investigated the regulatory mechanisms responsible for quercetin-induced apoptosis, mamely the increased expression of sestrin 2 and the activation of the 5′ AMP-activated protein kinase (AMPK)/p38 MAPK signaling pathway. Our results revealed that quercetin induced apoptosis by generating the production of intracellular reactive oxygen species (ROS) and increasing the expression of sestrin 2. The induction of apoptosis by quercetin occurred through the activation of the AMPK/p38 signaling pathway and was dependent on sestrin 2. However, the silencing of sestrin 2 using small interfering RNA (siRNA) targeting sestrin 2 revealed that quercetin did not regulate AMPK or p38 phosphorylation in the cells in which sestrin 2 was silenced. On the other hand, it has been previously reported that sestrin 2 expression is not dependent on p53 expression under hypoxic conditions, whereas DNA damage is dependent on p53. We demonstrate that the increase in the expression of sestrin 2 by quercetin-generated intracellular ROS is p53-independent. The increased expression of sestrin 2 induced apoptosis through the AMPK/p38 signaling pathway in the HT-29 colon cancer cells, which are p53 mutant, treated with quercetin. Thus, our data suggest that quercetin induces apoptosis by reducing mitochondrial membrane potential, generating intracellular ROS production and increasing sestrin 2 expression through the AMPK/p38 pathway. In addition, p53 is not a necessary element for an apoptotic event induced by sestrin 2.
doi_str_mv 10.3892/ijmm.2014.1658
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3976123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A437004767</galeid><sourcerecordid>A437004767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-4f774b4bf892df7cf665dd8557640c5bb2ba64eb84f187e0a00bc702dd860b273</originalsourceid><addsrcrecordid>eNptUstq3TAUNKWhSdNuuxZ0041uZT3tTeES-iIJSfqA7oQsH_vqYkuuZLfcD-p_ViYhIRAEkpgzMzqMTlG8KcmGVTV97_bjuKGk5JtSiupZcVKqusSU81_P870kCjMl5HHxMqU9IVTwunpRHFMumJCyPin-3SwQLczOowj9MpgZEpp3gBKkOWaU4u3l9TmeWIUut9fnKLnem8H5Hk1m3v01B2R8i5xvF5uVZgrTHJJLqDlk0EYwaeWujj14iGZ2waPQ5eIcjYVhyG9G9O3qe0aQQZNgOJvBBHnzMxqNz6pXxVFnhgSv787T4uenjz_OvuCLq89fz7YX2IqKz5h3SvGGN11Opu2U7aQUbVsJoSQnVjQNbYzk0FS8KysFxBDSWEVo5kjSUMVOiw-3vtPSjNBaWJsc9BTdaOJBB-P044p3O92HP5rVSpaUZYO3dwYx_F5yhHoflpgDS7qsGWWcUlE_sHozgHa-C2sWo0tWbzlThHAl12Y2T7DyamF0NnjoXMafEtgYUorQ3TdeEr1Oi16nRa_TotdpyYJ3t4I05U90bUj3ipWJGcOEY1JJxv4DW6TAvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932342259</pqid></control><display><type>article</type><title>Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner</title><source>Alma/SFX Local Collection</source><creator>KIM, GUEN TAE ; LEE, SE HEE ; KIM, JONG IL ; KIM, YOUNG MIN</creator><creatorcontrib>KIM, GUEN TAE ; LEE, SE HEE ; KIM, JONG IL ; KIM, YOUNG MIN</creatorcontrib><description>The induction of apoptosis in cancer cells is a therapeutic strategy for the treatment of cancer. In the present study, we investigated the regulatory mechanisms responsible for quercetin-induced apoptosis, mamely the increased expression of sestrin 2 and the activation of the 5′ AMP-activated protein kinase (AMPK)/p38 MAPK signaling pathway. Our results revealed that quercetin induced apoptosis by generating the production of intracellular reactive oxygen species (ROS) and increasing the expression of sestrin 2. The induction of apoptosis by quercetin occurred through the activation of the AMPK/p38 signaling pathway and was dependent on sestrin 2. However, the silencing of sestrin 2 using small interfering RNA (siRNA) targeting sestrin 2 revealed that quercetin did not regulate AMPK or p38 phosphorylation in the cells in which sestrin 2 was silenced. On the other hand, it has been previously reported that sestrin 2 expression is not dependent on p53 expression under hypoxic conditions, whereas DNA damage is dependent on p53. We demonstrate that the increase in the expression of sestrin 2 by quercetin-generated intracellular ROS is p53-independent. The increased expression of sestrin 2 induced apoptosis through the AMPK/p38 signaling pathway in the HT-29 colon cancer cells, which are p53 mutant, treated with quercetin. Thus, our data suggest that quercetin induces apoptosis by reducing mitochondrial membrane potential, generating intracellular ROS production and increasing sestrin 2 expression through the AMPK/p38 pathway. In addition, p53 is not a necessary element for an apoptotic event induced by sestrin 2.</description><identifier>ISSN: 1107-3756</identifier><identifier>EISSN: 1791-244X</identifier><identifier>DOI: 10.3892/ijmm.2014.1658</identifier><identifier>PMID: 24535669</identifier><language>eng</language><publisher>Athens: D.A. Spandidos</publisher><subject>Adenylic acid ; Apoptosis ; Breast cancer ; Cancer ; Care and treatment ; Cell cycle ; Cell growth ; Colorectal cancer ; Hydrogen peroxide ; Kinases ; mitochondria ; Oxidative stress ; Phosphorylation ; Proteins ; Quercetin ; Reactive oxygen species ; Risk factors ; sestrin 2 ; Studies</subject><ispartof>International journal of molecular medicine, 2014-04, Vol.33 (4), p.863-869</ispartof><rights>Copyright © 2014, Spandidos Publications</rights><rights>COPYRIGHT 2014 Spandidos Publications</rights><rights>Copyright Spandidos Publications UK Ltd. 2014</rights><rights>Copyright © 2014, Spandidos Publications 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-4f774b4bf892df7cf665dd8557640c5bb2ba64eb84f187e0a00bc702dd860b273</citedby><cites>FETCH-LOGICAL-c584t-4f774b4bf892df7cf665dd8557640c5bb2ba64eb84f187e0a00bc702dd860b273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>KIM, GUEN TAE</creatorcontrib><creatorcontrib>LEE, SE HEE</creatorcontrib><creatorcontrib>KIM, JONG IL</creatorcontrib><creatorcontrib>KIM, YOUNG MIN</creatorcontrib><title>Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner</title><title>International journal of molecular medicine</title><description>The induction of apoptosis in cancer cells is a therapeutic strategy for the treatment of cancer. In the present study, we investigated the regulatory mechanisms responsible for quercetin-induced apoptosis, mamely the increased expression of sestrin 2 and the activation of the 5′ AMP-activated protein kinase (AMPK)/p38 MAPK signaling pathway. Our results revealed that quercetin induced apoptosis by generating the production of intracellular reactive oxygen species (ROS) and increasing the expression of sestrin 2. The induction of apoptosis by quercetin occurred through the activation of the AMPK/p38 signaling pathway and was dependent on sestrin 2. However, the silencing of sestrin 2 using small interfering RNA (siRNA) targeting sestrin 2 revealed that quercetin did not regulate AMPK or p38 phosphorylation in the cells in which sestrin 2 was silenced. On the other hand, it has been previously reported that sestrin 2 expression is not dependent on p53 expression under hypoxic conditions, whereas DNA damage is dependent on p53. We demonstrate that the increase in the expression of sestrin 2 by quercetin-generated intracellular ROS is p53-independent. The increased expression of sestrin 2 induced apoptosis through the AMPK/p38 signaling pathway in the HT-29 colon cancer cells, which are p53 mutant, treated with quercetin. Thus, our data suggest that quercetin induces apoptosis by reducing mitochondrial membrane potential, generating intracellular ROS production and increasing sestrin 2 expression through the AMPK/p38 pathway. In addition, p53 is not a necessary element for an apoptotic event induced by sestrin 2.</description><subject>Adenylic acid</subject><subject>Apoptosis</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Cell cycle</subject><subject>Cell growth</subject><subject>Colorectal cancer</subject><subject>Hydrogen peroxide</subject><subject>Kinases</subject><subject>mitochondria</subject><subject>Oxidative stress</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Quercetin</subject><subject>Reactive oxygen species</subject><subject>Risk factors</subject><subject>sestrin 2</subject><subject>Studies</subject><issn>1107-3756</issn><issn>1791-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptUstq3TAUNKWhSdNuuxZ0041uZT3tTeES-iIJSfqA7oQsH_vqYkuuZLfcD-p_ViYhIRAEkpgzMzqMTlG8KcmGVTV97_bjuKGk5JtSiupZcVKqusSU81_P870kCjMl5HHxMqU9IVTwunpRHFMumJCyPin-3SwQLczOowj9MpgZEpp3gBKkOWaU4u3l9TmeWIUut9fnKLnem8H5Hk1m3v01B2R8i5xvF5uVZgrTHJJLqDlk0EYwaeWujj14iGZ2waPQ5eIcjYVhyG9G9O3qe0aQQZNgOJvBBHnzMxqNz6pXxVFnhgSv787T4uenjz_OvuCLq89fz7YX2IqKz5h3SvGGN11Opu2U7aQUbVsJoSQnVjQNbYzk0FS8KysFxBDSWEVo5kjSUMVOiw-3vtPSjNBaWJsc9BTdaOJBB-P044p3O92HP5rVSpaUZYO3dwYx_F5yhHoflpgDS7qsGWWcUlE_sHozgHa-C2sWo0tWbzlThHAl12Y2T7DyamF0NnjoXMafEtgYUorQ3TdeEr1Oi16nRa_TotdpyYJ3t4I05U90bUj3ipWJGcOEY1JJxv4DW6TAvQ</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>KIM, GUEN TAE</creator><creator>LEE, SE HEE</creator><creator>KIM, JONG IL</creator><creator>KIM, YOUNG MIN</creator><general>D.A. Spandidos</general><general>Spandidos Publications</general><general>Spandidos Publications UK Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20140401</creationdate><title>Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner</title><author>KIM, GUEN TAE ; LEE, SE HEE ; KIM, JONG IL ; KIM, YOUNG MIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-4f774b4bf892df7cf665dd8557640c5bb2ba64eb84f187e0a00bc702dd860b273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adenylic acid</topic><topic>Apoptosis</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Cell cycle</topic><topic>Cell growth</topic><topic>Colorectal cancer</topic><topic>Hydrogen peroxide</topic><topic>Kinases</topic><topic>mitochondria</topic><topic>Oxidative stress</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Quercetin</topic><topic>Reactive oxygen species</topic><topic>Risk factors</topic><topic>sestrin 2</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KIM, GUEN TAE</creatorcontrib><creatorcontrib>LEE, SE HEE</creatorcontrib><creatorcontrib>KIM, JONG IL</creatorcontrib><creatorcontrib>KIM, YOUNG MIN</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KIM, GUEN TAE</au><au>LEE, SE HEE</au><au>KIM, JONG IL</au><au>KIM, YOUNG MIN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner</atitle><jtitle>International journal of molecular medicine</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>33</volume><issue>4</issue><spage>863</spage><epage>869</epage><pages>863-869</pages><issn>1107-3756</issn><eissn>1791-244X</eissn><abstract>The induction of apoptosis in cancer cells is a therapeutic strategy for the treatment of cancer. In the present study, we investigated the regulatory mechanisms responsible for quercetin-induced apoptosis, mamely the increased expression of sestrin 2 and the activation of the 5′ AMP-activated protein kinase (AMPK)/p38 MAPK signaling pathway. Our results revealed that quercetin induced apoptosis by generating the production of intracellular reactive oxygen species (ROS) and increasing the expression of sestrin 2. The induction of apoptosis by quercetin occurred through the activation of the AMPK/p38 signaling pathway and was dependent on sestrin 2. However, the silencing of sestrin 2 using small interfering RNA (siRNA) targeting sestrin 2 revealed that quercetin did not regulate AMPK or p38 phosphorylation in the cells in which sestrin 2 was silenced. On the other hand, it has been previously reported that sestrin 2 expression is not dependent on p53 expression under hypoxic conditions, whereas DNA damage is dependent on p53. We demonstrate that the increase in the expression of sestrin 2 by quercetin-generated intracellular ROS is p53-independent. The increased expression of sestrin 2 induced apoptosis through the AMPK/p38 signaling pathway in the HT-29 colon cancer cells, which are p53 mutant, treated with quercetin. Thus, our data suggest that quercetin induces apoptosis by reducing mitochondrial membrane potential, generating intracellular ROS production and increasing sestrin 2 expression through the AMPK/p38 pathway. In addition, p53 is not a necessary element for an apoptotic event induced by sestrin 2.</abstract><cop>Athens</cop><pub>D.A. Spandidos</pub><pmid>24535669</pmid><doi>10.3892/ijmm.2014.1658</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1107-3756
ispartof International journal of molecular medicine, 2014-04, Vol.33 (4), p.863-869
issn 1107-3756
1791-244X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3976123
source Alma/SFX Local Collection
subjects Adenylic acid
Apoptosis
Breast cancer
Cancer
Care and treatment
Cell cycle
Cell growth
Colorectal cancer
Hydrogen peroxide
Kinases
mitochondria
Oxidative stress
Phosphorylation
Proteins
Quercetin
Reactive oxygen species
Risk factors
sestrin 2
Studies
title Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A22%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quercetin%20regulates%20the%20sestrin%202-AMPK-p38%20MAPK%20signaling%20pathway%20and%20induces%20apoptosis%20by%20increasing%20the%20generation%20of%20intracellular%20ROS%20in%20a%20p53-independent%20manner&rft.jtitle=International%20journal%20of%20molecular%20medicine&rft.au=KIM,%20GUEN%20TAE&rft.date=2014-04-01&rft.volume=33&rft.issue=4&rft.spage=863&rft.epage=869&rft.pages=863-869&rft.issn=1107-3756&rft.eissn=1791-244X&rft_id=info:doi/10.3892/ijmm.2014.1658&rft_dat=%3Cgale_pubme%3EA437004767%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c584t-4f774b4bf892df7cf665dd8557640c5bb2ba64eb84f187e0a00bc702dd860b273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1932342259&rft_id=info:pmid/24535669&rft_galeid=A437004767&rfr_iscdi=true