Loading…

A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes

The glycation of protein and nucleic acids that occurs as a consequence of hyperglycemia disrupts cell function and contributes to many pathologies, including those associated with diabetes and aging. Intracellular glycation occurs after the generation of the reactive 1,2-dicarbonyls methylglyoxal a...

Full description

Saved in:
Bibliographic Details
Published in:Free radical biology & medicine 2014-02, Vol.67 (100), p.437-450
Main Authors: Pun, Pamela Boon Li, Logan, Angela, Darley-Usmar, Victor, Chacko, Balu, Johnson, Michelle S., Huang, Guang W., Rogatti, Sebastian, Prime, Tracy A., Methner, Carmen, Krieg, Thomas, Fearnley, Ian M., Larsen, Lesley, Larsen, David S., Menger, Katja E., Collins, Yvonne, James, Andrew M., Kumar, G.D. Kishore, Hartley, Richard C., Smith, Robin A.J., Murphy, Michael P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c557t-405fb0b14124399d04e2fd85431bcbe6b442e848165c9dbac575baf7ae04d7503
cites cdi_FETCH-LOGICAL-c557t-405fb0b14124399d04e2fd85431bcbe6b442e848165c9dbac575baf7ae04d7503
container_end_page 450
container_issue 100
container_start_page 437
container_title Free radical biology & medicine
container_volume 67
creator Pun, Pamela Boon Li
Logan, Angela
Darley-Usmar, Victor
Chacko, Balu
Johnson, Michelle S.
Huang, Guang W.
Rogatti, Sebastian
Prime, Tracy A.
Methner, Carmen
Krieg, Thomas
Fearnley, Ian M.
Larsen, Lesley
Larsen, David S.
Menger, Katja E.
Collins, Yvonne
James, Andrew M.
Kumar, G.D. Kishore
Hartley, Richard C.
Smith, Robin A.J.
Murphy, Michael P.
description The glycation of protein and nucleic acids that occurs as a consequence of hyperglycemia disrupts cell function and contributes to many pathologies, including those associated with diabetes and aging. Intracellular glycation occurs after the generation of the reactive 1,2-dicarbonyls methylglyoxal and glyoxal, and disruption of mitochondrial function is associated with hyperglycemia. However, the contribution of these reactive dicarbonyls to mitochondrial damage in pathology is unclear owing to uncertainties about their levels within mitochondria in cells and in vivo. To address this we have developed a mitochondria-targeted reagent (MitoG) designed to assess the levels of mitochondrial dicarbonyls within cells. MitoG comprises a lipophilic triphenylphosphonium cationic function, which directs the molecules to mitochondria within cells, and an o-phenylenediamine moiety that reacts with dicarbonyls to give distinctive and stable products. The extent of accumulation of these diagnostic heterocyclic products can be readily and sensitively quantified by liquid chromatography–tandem mass spectrometry, enabling changes to be determined. Using the MitoG-based analysis we assessed the formation of methylglyoxal and glyoxal in response to hyperglycemia in cells in culture and in the Akita mouse model of diabetes in vivo. These findings indicated that the levels of methylglyoxal and glyoxal within mitochondria increase during hyperglycemia both in cells and in vivo, suggesting that they can contribute to the pathological mitochondrial dysfunction that occurs in diabetes and aging. •A mitochondria-targeted mass spectrometric probe, MitoG, has been developed to measure glyoxal and methylglyoxal.•Using MitoG we show that mitochondrial glyoxal and methylglyoxal can be measured in hyperglycemic cells.•MitoG can also be used in vivo to infer mitochondrial glyoxal and methylglyoxal production in a mouse model of type I diabetes.•These findings suggest that the accumulation of glyoxal and methylglyoxal within mitochondria may contribute to mitochondrial dysfunction in diabetes.
doi_str_mv 10.1016/j.freeradbiomed.2013.11.025
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3978666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089158491301530X</els_id><sourcerecordid>1499154519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-405fb0b14124399d04e2fd85431bcbe6b442e848165c9dbac575baf7ae04d7503</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS0EotPHX0CW2LBJ8E3sJAYJqapaQKrEBpbI8uNm6lESB9tTMf8eV1MqumPlhb97ztE5hLwFVgOD7v2uHiNi1M74MKOrGwZtDVCzRrwgGxj6tuJCdi_Jhg0SKjFweUJOU9oxxrhoh9fkpOEtdCD5hvy8pLPPwd6FxUWvq6zjFjM6OuuUaFrR5lhccjzQNQaDNAfqCmAz3U6H8FtP6QP18zp5q7MPS6JjiNR5bQqUzsmrsRB48fiekR8319-vvlS33z5_vbq8rawQfa44E6NhBjiUYFI6xrEZ3SBKSmMNdobzBgc-QCesdEZb0Qujx14j464XrD0jn466696USiwuOepJrdHPOh5U0F49_1n8ndqGe9XKfui6rgi8exSI4dceU1azTxanSS8Y9kkBlxIEFyAL-vGI2hhSijg-2QBTDwOpnXo2kHoYSAGoMlC5fvNv0qfbv4sU4PoIYOnr3mNUyXpcLDofS-vKBf9fRn8A-PWsrw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499154519</pqid></control><display><type>article</type><title>A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes</title><source>Elsevier</source><creator>Pun, Pamela Boon Li ; Logan, Angela ; Darley-Usmar, Victor ; Chacko, Balu ; Johnson, Michelle S. ; Huang, Guang W. ; Rogatti, Sebastian ; Prime, Tracy A. ; Methner, Carmen ; Krieg, Thomas ; Fearnley, Ian M. ; Larsen, Lesley ; Larsen, David S. ; Menger, Katja E. ; Collins, Yvonne ; James, Andrew M. ; Kumar, G.D. Kishore ; Hartley, Richard C. ; Smith, Robin A.J. ; Murphy, Michael P.</creator><creatorcontrib>Pun, Pamela Boon Li ; Logan, Angela ; Darley-Usmar, Victor ; Chacko, Balu ; Johnson, Michelle S. ; Huang, Guang W. ; Rogatti, Sebastian ; Prime, Tracy A. ; Methner, Carmen ; Krieg, Thomas ; Fearnley, Ian M. ; Larsen, Lesley ; Larsen, David S. ; Menger, Katja E. ; Collins, Yvonne ; James, Andrew M. ; Kumar, G.D. Kishore ; Hartley, Richard C. ; Smith, Robin A.J. ; Murphy, Michael P.</creatorcontrib><description>The glycation of protein and nucleic acids that occurs as a consequence of hyperglycemia disrupts cell function and contributes to many pathologies, including those associated with diabetes and aging. Intracellular glycation occurs after the generation of the reactive 1,2-dicarbonyls methylglyoxal and glyoxal, and disruption of mitochondrial function is associated with hyperglycemia. However, the contribution of these reactive dicarbonyls to mitochondrial damage in pathology is unclear owing to uncertainties about their levels within mitochondria in cells and in vivo. To address this we have developed a mitochondria-targeted reagent (MitoG) designed to assess the levels of mitochondrial dicarbonyls within cells. MitoG comprises a lipophilic triphenylphosphonium cationic function, which directs the molecules to mitochondria within cells, and an o-phenylenediamine moiety that reacts with dicarbonyls to give distinctive and stable products. The extent of accumulation of these diagnostic heterocyclic products can be readily and sensitively quantified by liquid chromatography–tandem mass spectrometry, enabling changes to be determined. Using the MitoG-based analysis we assessed the formation of methylglyoxal and glyoxal in response to hyperglycemia in cells in culture and in the Akita mouse model of diabetes in vivo. These findings indicated that the levels of methylglyoxal and glyoxal within mitochondria increase during hyperglycemia both in cells and in vivo, suggesting that they can contribute to the pathological mitochondrial dysfunction that occurs in diabetes and aging. •A mitochondria-targeted mass spectrometric probe, MitoG, has been developed to measure glyoxal and methylglyoxal.•Using MitoG we show that mitochondrial glyoxal and methylglyoxal can be measured in hyperglycemic cells.•MitoG can also be used in vivo to infer mitochondrial glyoxal and methylglyoxal production in a mouse model of type I diabetes.•These findings suggest that the accumulation of glyoxal and methylglyoxal within mitochondria may contribute to mitochondrial dysfunction in diabetes.</description><identifier>ISSN: 0891-5849</identifier><identifier>EISSN: 1873-4596</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2013.11.025</identifier><identifier>PMID: 24316194</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cattle ; Cell Line ; Chromatography, Liquid ; Diabetes Mellitus, Type 1 - diagnosis ; Diabetes Mellitus, Type 1 - metabolism ; Diabetes Mellitus, Type 1 - pathology ; Disease Models, Animal ; Endothelial Cells - metabolism ; Endothelial Cells - pathology ; Exomarker ; Free radicals ; Glyoxal ; Glyoxal - analysis ; Glyoxal - metabolism ; Hyperglycemia ; Hyperglycemia - diagnosis ; Hyperglycemia - metabolism ; Hyperglycemia - pathology ; Methylglyoxal ; Mice ; Mitochondria ; Mitochondria, Liver - metabolism ; Mitochondria, Liver - pathology ; MitoG ; Molecular Probes - chemical synthesis ; Myoblasts - metabolism ; Myoblasts - pathology ; Organophosphorus Compounds - chemistry ; Original Contribution ; Oxidative Stress ; Phenylenediamines - chemistry ; Pyruvaldehyde - analysis ; Pyruvaldehyde - metabolism ; Rats ; Tandem Mass Spectrometry</subject><ispartof>Free radical biology &amp; medicine, 2014-02, Vol.67 (100), p.437-450</ispartof><rights>2013 The Authors</rights><rights>Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2013 The Authors 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-405fb0b14124399d04e2fd85431bcbe6b442e848165c9dbac575baf7ae04d7503</citedby><cites>FETCH-LOGICAL-c557t-405fb0b14124399d04e2fd85431bcbe6b442e848165c9dbac575baf7ae04d7503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24316194$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pun, Pamela Boon Li</creatorcontrib><creatorcontrib>Logan, Angela</creatorcontrib><creatorcontrib>Darley-Usmar, Victor</creatorcontrib><creatorcontrib>Chacko, Balu</creatorcontrib><creatorcontrib>Johnson, Michelle S.</creatorcontrib><creatorcontrib>Huang, Guang W.</creatorcontrib><creatorcontrib>Rogatti, Sebastian</creatorcontrib><creatorcontrib>Prime, Tracy A.</creatorcontrib><creatorcontrib>Methner, Carmen</creatorcontrib><creatorcontrib>Krieg, Thomas</creatorcontrib><creatorcontrib>Fearnley, Ian M.</creatorcontrib><creatorcontrib>Larsen, Lesley</creatorcontrib><creatorcontrib>Larsen, David S.</creatorcontrib><creatorcontrib>Menger, Katja E.</creatorcontrib><creatorcontrib>Collins, Yvonne</creatorcontrib><creatorcontrib>James, Andrew M.</creatorcontrib><creatorcontrib>Kumar, G.D. Kishore</creatorcontrib><creatorcontrib>Hartley, Richard C.</creatorcontrib><creatorcontrib>Smith, Robin A.J.</creatorcontrib><creatorcontrib>Murphy, Michael P.</creatorcontrib><title>A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes</title><title>Free radical biology &amp; medicine</title><addtitle>Free Radic Biol Med</addtitle><description>The glycation of protein and nucleic acids that occurs as a consequence of hyperglycemia disrupts cell function and contributes to many pathologies, including those associated with diabetes and aging. Intracellular glycation occurs after the generation of the reactive 1,2-dicarbonyls methylglyoxal and glyoxal, and disruption of mitochondrial function is associated with hyperglycemia. However, the contribution of these reactive dicarbonyls to mitochondrial damage in pathology is unclear owing to uncertainties about their levels within mitochondria in cells and in vivo. To address this we have developed a mitochondria-targeted reagent (MitoG) designed to assess the levels of mitochondrial dicarbonyls within cells. MitoG comprises a lipophilic triphenylphosphonium cationic function, which directs the molecules to mitochondria within cells, and an o-phenylenediamine moiety that reacts with dicarbonyls to give distinctive and stable products. The extent of accumulation of these diagnostic heterocyclic products can be readily and sensitively quantified by liquid chromatography–tandem mass spectrometry, enabling changes to be determined. Using the MitoG-based analysis we assessed the formation of methylglyoxal and glyoxal in response to hyperglycemia in cells in culture and in the Akita mouse model of diabetes in vivo. These findings indicated that the levels of methylglyoxal and glyoxal within mitochondria increase during hyperglycemia both in cells and in vivo, suggesting that they can contribute to the pathological mitochondrial dysfunction that occurs in diabetes and aging. •A mitochondria-targeted mass spectrometric probe, MitoG, has been developed to measure glyoxal and methylglyoxal.•Using MitoG we show that mitochondrial glyoxal and methylglyoxal can be measured in hyperglycemic cells.•MitoG can also be used in vivo to infer mitochondrial glyoxal and methylglyoxal production in a mouse model of type I diabetes.•These findings suggest that the accumulation of glyoxal and methylglyoxal within mitochondria may contribute to mitochondrial dysfunction in diabetes.</description><subject>Animals</subject><subject>Cattle</subject><subject>Cell Line</subject><subject>Chromatography, Liquid</subject><subject>Diabetes Mellitus, Type 1 - diagnosis</subject><subject>Diabetes Mellitus, Type 1 - metabolism</subject><subject>Diabetes Mellitus, Type 1 - pathology</subject><subject>Disease Models, Animal</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - pathology</subject><subject>Exomarker</subject><subject>Free radicals</subject><subject>Glyoxal</subject><subject>Glyoxal - analysis</subject><subject>Glyoxal - metabolism</subject><subject>Hyperglycemia</subject><subject>Hyperglycemia - diagnosis</subject><subject>Hyperglycemia - metabolism</subject><subject>Hyperglycemia - pathology</subject><subject>Methylglyoxal</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Mitochondria, Liver - pathology</subject><subject>MitoG</subject><subject>Molecular Probes - chemical synthesis</subject><subject>Myoblasts - metabolism</subject><subject>Myoblasts - pathology</subject><subject>Organophosphorus Compounds - chemistry</subject><subject>Original Contribution</subject><subject>Oxidative Stress</subject><subject>Phenylenediamines - chemistry</subject><subject>Pyruvaldehyde - analysis</subject><subject>Pyruvaldehyde - metabolism</subject><subject>Rats</subject><subject>Tandem Mass Spectrometry</subject><issn>0891-5849</issn><issn>1873-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkUtv1DAUhS0EotPHX0CW2LBJ8E3sJAYJqapaQKrEBpbI8uNm6lESB9tTMf8eV1MqumPlhb97ztE5hLwFVgOD7v2uHiNi1M74MKOrGwZtDVCzRrwgGxj6tuJCdi_Jhg0SKjFweUJOU9oxxrhoh9fkpOEtdCD5hvy8pLPPwd6FxUWvq6zjFjM6OuuUaFrR5lhccjzQNQaDNAfqCmAz3U6H8FtP6QP18zp5q7MPS6JjiNR5bQqUzsmrsRB48fiekR8319-vvlS33z5_vbq8rawQfa44E6NhBjiUYFI6xrEZ3SBKSmMNdobzBgc-QCesdEZb0Qujx14j464XrD0jn466696USiwuOepJrdHPOh5U0F49_1n8ndqGe9XKfui6rgi8exSI4dceU1azTxanSS8Y9kkBlxIEFyAL-vGI2hhSijg-2QBTDwOpnXo2kHoYSAGoMlC5fvNv0qfbv4sU4PoIYOnr3mNUyXpcLDofS-vKBf9fRn8A-PWsrw</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Pun, Pamela Boon Li</creator><creator>Logan, Angela</creator><creator>Darley-Usmar, Victor</creator><creator>Chacko, Balu</creator><creator>Johnson, Michelle S.</creator><creator>Huang, Guang W.</creator><creator>Rogatti, Sebastian</creator><creator>Prime, Tracy A.</creator><creator>Methner, Carmen</creator><creator>Krieg, Thomas</creator><creator>Fearnley, Ian M.</creator><creator>Larsen, Lesley</creator><creator>Larsen, David S.</creator><creator>Menger, Katja E.</creator><creator>Collins, Yvonne</creator><creator>James, Andrew M.</creator><creator>Kumar, G.D. Kishore</creator><creator>Hartley, Richard C.</creator><creator>Smith, Robin A.J.</creator><creator>Murphy, Michael P.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201402</creationdate><title>A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes</title><author>Pun, Pamela Boon Li ; Logan, Angela ; Darley-Usmar, Victor ; Chacko, Balu ; Johnson, Michelle S. ; Huang, Guang W. ; Rogatti, Sebastian ; Prime, Tracy A. ; Methner, Carmen ; Krieg, Thomas ; Fearnley, Ian M. ; Larsen, Lesley ; Larsen, David S. ; Menger, Katja E. ; Collins, Yvonne ; James, Andrew M. ; Kumar, G.D. Kishore ; Hartley, Richard C. ; Smith, Robin A.J. ; Murphy, Michael P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-405fb0b14124399d04e2fd85431bcbe6b442e848165c9dbac575baf7ae04d7503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Cattle</topic><topic>Cell Line</topic><topic>Chromatography, Liquid</topic><topic>Diabetes Mellitus, Type 1 - diagnosis</topic><topic>Diabetes Mellitus, Type 1 - metabolism</topic><topic>Diabetes Mellitus, Type 1 - pathology</topic><topic>Disease Models, Animal</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - pathology</topic><topic>Exomarker</topic><topic>Free radicals</topic><topic>Glyoxal</topic><topic>Glyoxal - analysis</topic><topic>Glyoxal - metabolism</topic><topic>Hyperglycemia</topic><topic>Hyperglycemia - diagnosis</topic><topic>Hyperglycemia - metabolism</topic><topic>Hyperglycemia - pathology</topic><topic>Methylglyoxal</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Mitochondria, Liver - pathology</topic><topic>MitoG</topic><topic>Molecular Probes - chemical synthesis</topic><topic>Myoblasts - metabolism</topic><topic>Myoblasts - pathology</topic><topic>Organophosphorus Compounds - chemistry</topic><topic>Original Contribution</topic><topic>Oxidative Stress</topic><topic>Phenylenediamines - chemistry</topic><topic>Pyruvaldehyde - analysis</topic><topic>Pyruvaldehyde - metabolism</topic><topic>Rats</topic><topic>Tandem Mass Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pun, Pamela Boon Li</creatorcontrib><creatorcontrib>Logan, Angela</creatorcontrib><creatorcontrib>Darley-Usmar, Victor</creatorcontrib><creatorcontrib>Chacko, Balu</creatorcontrib><creatorcontrib>Johnson, Michelle S.</creatorcontrib><creatorcontrib>Huang, Guang W.</creatorcontrib><creatorcontrib>Rogatti, Sebastian</creatorcontrib><creatorcontrib>Prime, Tracy A.</creatorcontrib><creatorcontrib>Methner, Carmen</creatorcontrib><creatorcontrib>Krieg, Thomas</creatorcontrib><creatorcontrib>Fearnley, Ian M.</creatorcontrib><creatorcontrib>Larsen, Lesley</creatorcontrib><creatorcontrib>Larsen, David S.</creatorcontrib><creatorcontrib>Menger, Katja E.</creatorcontrib><creatorcontrib>Collins, Yvonne</creatorcontrib><creatorcontrib>James, Andrew M.</creatorcontrib><creatorcontrib>Kumar, G.D. Kishore</creatorcontrib><creatorcontrib>Hartley, Richard C.</creatorcontrib><creatorcontrib>Smith, Robin A.J.</creatorcontrib><creatorcontrib>Murphy, Michael P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Free radical biology &amp; medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pun, Pamela Boon Li</au><au>Logan, Angela</au><au>Darley-Usmar, Victor</au><au>Chacko, Balu</au><au>Johnson, Michelle S.</au><au>Huang, Guang W.</au><au>Rogatti, Sebastian</au><au>Prime, Tracy A.</au><au>Methner, Carmen</au><au>Krieg, Thomas</au><au>Fearnley, Ian M.</au><au>Larsen, Lesley</au><au>Larsen, David S.</au><au>Menger, Katja E.</au><au>Collins, Yvonne</au><au>James, Andrew M.</au><au>Kumar, G.D. Kishore</au><au>Hartley, Richard C.</au><au>Smith, Robin A.J.</au><au>Murphy, Michael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes</atitle><jtitle>Free radical biology &amp; medicine</jtitle><addtitle>Free Radic Biol Med</addtitle><date>2014-02</date><risdate>2014</risdate><volume>67</volume><issue>100</issue><spage>437</spage><epage>450</epage><pages>437-450</pages><issn>0891-5849</issn><eissn>1873-4596</eissn><abstract>The glycation of protein and nucleic acids that occurs as a consequence of hyperglycemia disrupts cell function and contributes to many pathologies, including those associated with diabetes and aging. Intracellular glycation occurs after the generation of the reactive 1,2-dicarbonyls methylglyoxal and glyoxal, and disruption of mitochondrial function is associated with hyperglycemia. However, the contribution of these reactive dicarbonyls to mitochondrial damage in pathology is unclear owing to uncertainties about their levels within mitochondria in cells and in vivo. To address this we have developed a mitochondria-targeted reagent (MitoG) designed to assess the levels of mitochondrial dicarbonyls within cells. MitoG comprises a lipophilic triphenylphosphonium cationic function, which directs the molecules to mitochondria within cells, and an o-phenylenediamine moiety that reacts with dicarbonyls to give distinctive and stable products. The extent of accumulation of these diagnostic heterocyclic products can be readily and sensitively quantified by liquid chromatography–tandem mass spectrometry, enabling changes to be determined. Using the MitoG-based analysis we assessed the formation of methylglyoxal and glyoxal in response to hyperglycemia in cells in culture and in the Akita mouse model of diabetes in vivo. These findings indicated that the levels of methylglyoxal and glyoxal within mitochondria increase during hyperglycemia both in cells and in vivo, suggesting that they can contribute to the pathological mitochondrial dysfunction that occurs in diabetes and aging. •A mitochondria-targeted mass spectrometric probe, MitoG, has been developed to measure glyoxal and methylglyoxal.•Using MitoG we show that mitochondrial glyoxal and methylglyoxal can be measured in hyperglycemic cells.•MitoG can also be used in vivo to infer mitochondrial glyoxal and methylglyoxal production in a mouse model of type I diabetes.•These findings suggest that the accumulation of glyoxal and methylglyoxal within mitochondria may contribute to mitochondrial dysfunction in diabetes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24316194</pmid><doi>10.1016/j.freeradbiomed.2013.11.025</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0891-5849
ispartof Free radical biology & medicine, 2014-02, Vol.67 (100), p.437-450
issn 0891-5849
1873-4596
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3978666
source Elsevier
subjects Animals
Cattle
Cell Line
Chromatography, Liquid
Diabetes Mellitus, Type 1 - diagnosis
Diabetes Mellitus, Type 1 - metabolism
Diabetes Mellitus, Type 1 - pathology
Disease Models, Animal
Endothelial Cells - metabolism
Endothelial Cells - pathology
Exomarker
Free radicals
Glyoxal
Glyoxal - analysis
Glyoxal - metabolism
Hyperglycemia
Hyperglycemia - diagnosis
Hyperglycemia - metabolism
Hyperglycemia - pathology
Methylglyoxal
Mice
Mitochondria
Mitochondria, Liver - metabolism
Mitochondria, Liver - pathology
MitoG
Molecular Probes - chemical synthesis
Myoblasts - metabolism
Myoblasts - pathology
Organophosphorus Compounds - chemistry
Original Contribution
Oxidative Stress
Phenylenediamines - chemistry
Pyruvaldehyde - analysis
Pyruvaldehyde - metabolism
Rats
Tandem Mass Spectrometry
title A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A12%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mitochondria-targeted%20mass%20spectrometry%20probe%20to%20detect%20glyoxals:%20implications%20for%20diabetes&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=Pun,%20Pamela%20Boon%20Li&rft.date=2014-02&rft.volume=67&rft.issue=100&rft.spage=437&rft.epage=450&rft.pages=437-450&rft.issn=0891-5849&rft.eissn=1873-4596&rft_id=info:doi/10.1016/j.freeradbiomed.2013.11.025&rft_dat=%3Cproquest_pubme%3E1499154519%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c557t-405fb0b14124399d04e2fd85431bcbe6b442e848165c9dbac575baf7ae04d7503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1499154519&rft_id=info:pmid/24316194&rfr_iscdi=true