Loading…
CSF Apo-E levels associate with cognitive decline and MRI changes
Apolipoprotein E ( APOE ) ε4 allele is the most important genetic risk factor for Alzheimer’s disease (AD) and it is thought to do so by modulating levels of its product, apolipoprotein E (Apo-E), and regulating amyloid-β (Aβ) clearance. However, information on clinical and biomarker correlates of A...
Saved in:
Published in: | Acta neuropathologica 2014-05, Vol.127 (5), p.621-632 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Apolipoprotein E (
APOE
) ε4 allele is the most important genetic risk factor for Alzheimer’s disease (AD) and it is thought to do so by modulating levels of its product, apolipoprotein E (Apo-E), and regulating amyloid-β (Aβ) clearance. However, information on clinical and biomarker correlates of Apo-E proteins is scarce. We examined the relationship of cerebrospinal fluid (CSF) and plasma Apo-E protein levels, and
APOE
genotype to cognition and AD biomarker changes in 311 AD neuroimaging initiative subjects with CSF Apo-E measurements and 565 subjects with plasma Apo-E measurements. At baseline, higher CSF Apo-E levels were associated with higher total and phosphorylated CSF tau levels. CSF Apo-E levels were associated with longitudinal cognitive decline, MCI conversion to dementia, and gray matter atrophy rate in total tau/Aβ
1–42
ratio and
APOE
genotype-adjusted analyses. In analyses stratified by
APOE
genotype, our results were only significant in the group without the ε4 allele. Baseline CSF Apo-E levels did not predict longitudinal CSF Aβ or tau changes. Plasma Apo-E levels show a mild correlation with CSF Apo-E levels, but were not associated with longitudinal cognitive and MRI changes. Based on our analyses, we speculate that increased CSF Apo-E2 or -E3 levels might represent a protective response to injury in AD and may have neuroprotective effects by decreasing neuronal damage independent of tau and amyloid deposition in addition to its effects on amyloid clearance. |
---|---|
ISSN: | 0001-6322 1432-0533 |
DOI: | 10.1007/s00401-013-1236-0 |