Loading…
Mendelian randomization in health research: Using appropriate genetic variants and avoiding biased estimates
•We model potential biases that may arise in Mendelian randomization analysis.•Genetic variants should robustly associate with exposures in independent samples.•If not, Mendelian randomization can suggest causality despite no true associations. Mendelian randomization methods, which use genetic vari...
Saved in:
Published in: | Economics and human biology 2014-03, Vol.13 (100), p.99-106 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c581t-d6f4fae8544f78df8d9ffb88c88c3c99fee89bc1117ccd73ff367bf707d72cd03 |
---|---|
cites | cdi_FETCH-LOGICAL-c581t-d6f4fae8544f78df8d9ffb88c88c3c99fee89bc1117ccd73ff367bf707d72cd03 |
container_end_page | 106 |
container_issue | 100 |
container_start_page | 99 |
container_title | Economics and human biology |
container_volume | 13 |
creator | Taylor, Amy E. Davies, Neil M. Ware, Jennifer J. VanderWeele, Tyler Smith, George Davey Munafò, Marcus R. |
description | •We model potential biases that may arise in Mendelian randomization analysis.•Genetic variants should robustly associate with exposures in independent samples.•If not, Mendelian randomization can suggest causality despite no true associations.
Mendelian randomization methods, which use genetic variants as instrumental variables for exposures of interest to overcome problems of confounding and reverse causality, are becoming widespread for assessing causal relationships in epidemiological studies. The main purpose of this paper is to demonstrate how results can be biased if researchers select genetic variants on the basis of their association with the exposure in their own dataset, as often happens in candidate gene analyses. This can lead to estimates that indicate apparent “causal” relationships, despite there being no true effect of the exposure. In addition, we discuss the potential bias in estimates of magnitudes of effect from Mendelian randomization analyses when the measured exposure is a poor proxy for the true underlying exposure. We illustrate these points with specific reference to tobacco research. |
doi_str_mv | 10.1016/j.ehb.2013.12.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3989031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1570677X1300124X</els_id><sourcerecordid>1502336309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c581t-d6f4fae8544f78df8d9ffb88c88c3c99fee89bc1117ccd73ff367bf707d72cd03</originalsourceid><addsrcrecordid>eNp9kUGLFDEQhYMo7u7oD_AiOXrpNunMdNIKgiy6CiteXPAW0klluobuZEwyA_rrzTDrohchUAn11cujHiEvOGs54_3rXQvT2HaMi5Z3LWPdI3LJlRRNzwV7XO8byZpeyu8X5CrnXQVEHXtKLrq1UIp38pLMXyA4mNEEmkxwccFfpmAMFAOdwMxlogkymGSnN_QuY9hSs9-nuE9oCtAtBCho6dHUdyiZVg1qjhHdiRzRZHAUcsGl0vkZeeLNnOH5fV2Ru48fvl1_am6_3ny-fn_b2I3ipXG9X3sDarNee6mcV27wflTK1iPsMHgANYyWcy6tdVJ4L3o5esmkk511TKzIu7Pu_jAu4CyEksysq-fFpJ86GtT_dgJOehuPWgxqYIJXgVf3Ain-OFT_esFsYZ5NgHjImm_qKkUv2FBRfkZtijkn8A_fcKZPKemdrinpU0qad_oUwoq8_Nvfw8SfWCrw9gxA3dIRIelsEYIFhwls0S7if-R_Ax8dpxc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1502336309</pqid></control><display><type>article</type><title>Mendelian randomization in health research: Using appropriate genetic variants and avoiding biased estimates</title><source>Elsevier</source><creator>Taylor, Amy E. ; Davies, Neil M. ; Ware, Jennifer J. ; VanderWeele, Tyler ; Smith, George Davey ; Munafò, Marcus R.</creator><creatorcontrib>Taylor, Amy E. ; Davies, Neil M. ; Ware, Jennifer J. ; VanderWeele, Tyler ; Smith, George Davey ; Munafò, Marcus R.</creatorcontrib><description>•We model potential biases that may arise in Mendelian randomization analysis.•Genetic variants should robustly associate with exposures in independent samples.•If not, Mendelian randomization can suggest causality despite no true associations.
Mendelian randomization methods, which use genetic variants as instrumental variables for exposures of interest to overcome problems of confounding and reverse causality, are becoming widespread for assessing causal relationships in epidemiological studies. The main purpose of this paper is to demonstrate how results can be biased if researchers select genetic variants on the basis of their association with the exposure in their own dataset, as often happens in candidate gene analyses. This can lead to estimates that indicate apparent “causal” relationships, despite there being no true effect of the exposure. In addition, we discuss the potential bias in estimates of magnitudes of effect from Mendelian randomization analyses when the measured exposure is a poor proxy for the true underlying exposure. We illustrate these points with specific reference to tobacco research.</description><identifier>ISSN: 1570-677X</identifier><identifier>EISSN: 1873-6130</identifier><identifier>DOI: 10.1016/j.ehb.2013.12.002</identifier><identifier>PMID: 24388127</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bias ; Causal inference ; Causality ; Confounding Factors, Epidemiologic ; Genome-Wide Association Study - methods ; Humans ; Instrumental variable ; Mendelian randomization ; Mendelian Randomization Analysis - methods ; Research Design ; Smoking ; Smoking - genetics ; Tobacco</subject><ispartof>Economics and human biology, 2014-03, Vol.13 (100), p.99-106</ispartof><rights>2013 The Authors</rights><rights>Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.</rights><rights>2013 The Authors 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c581t-d6f4fae8544f78df8d9ffb88c88c3c99fee89bc1117ccd73ff367bf707d72cd03</citedby><cites>FETCH-LOGICAL-c581t-d6f4fae8544f78df8d9ffb88c88c3c99fee89bc1117ccd73ff367bf707d72cd03</cites><orcidid>0000-0002-4049-993X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24388127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taylor, Amy E.</creatorcontrib><creatorcontrib>Davies, Neil M.</creatorcontrib><creatorcontrib>Ware, Jennifer J.</creatorcontrib><creatorcontrib>VanderWeele, Tyler</creatorcontrib><creatorcontrib>Smith, George Davey</creatorcontrib><creatorcontrib>Munafò, Marcus R.</creatorcontrib><title>Mendelian randomization in health research: Using appropriate genetic variants and avoiding biased estimates</title><title>Economics and human biology</title><addtitle>Econ Hum Biol</addtitle><description>•We model potential biases that may arise in Mendelian randomization analysis.•Genetic variants should robustly associate with exposures in independent samples.•If not, Mendelian randomization can suggest causality despite no true associations.
Mendelian randomization methods, which use genetic variants as instrumental variables for exposures of interest to overcome problems of confounding and reverse causality, are becoming widespread for assessing causal relationships in epidemiological studies. The main purpose of this paper is to demonstrate how results can be biased if researchers select genetic variants on the basis of their association with the exposure in their own dataset, as often happens in candidate gene analyses. This can lead to estimates that indicate apparent “causal” relationships, despite there being no true effect of the exposure. In addition, we discuss the potential bias in estimates of magnitudes of effect from Mendelian randomization analyses when the measured exposure is a poor proxy for the true underlying exposure. We illustrate these points with specific reference to tobacco research.</description><subject>Bias</subject><subject>Causal inference</subject><subject>Causality</subject><subject>Confounding Factors, Epidemiologic</subject><subject>Genome-Wide Association Study - methods</subject><subject>Humans</subject><subject>Instrumental variable</subject><subject>Mendelian randomization</subject><subject>Mendelian Randomization Analysis - methods</subject><subject>Research Design</subject><subject>Smoking</subject><subject>Smoking - genetics</subject><subject>Tobacco</subject><issn>1570-677X</issn><issn>1873-6130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kUGLFDEQhYMo7u7oD_AiOXrpNunMdNIKgiy6CiteXPAW0klluobuZEwyA_rrzTDrohchUAn11cujHiEvOGs54_3rXQvT2HaMi5Z3LWPdI3LJlRRNzwV7XO8byZpeyu8X5CrnXQVEHXtKLrq1UIp38pLMXyA4mNEEmkxwccFfpmAMFAOdwMxlogkymGSnN_QuY9hSs9-nuE9oCtAtBCho6dHUdyiZVg1qjhHdiRzRZHAUcsGl0vkZeeLNnOH5fV2Ru48fvl1_am6_3ny-fn_b2I3ipXG9X3sDarNee6mcV27wflTK1iPsMHgANYyWcy6tdVJ4L3o5esmkk511TKzIu7Pu_jAu4CyEksysq-fFpJ86GtT_dgJOehuPWgxqYIJXgVf3Ain-OFT_esFsYZ5NgHjImm_qKkUv2FBRfkZtijkn8A_fcKZPKemdrinpU0qad_oUwoq8_Nvfw8SfWCrw9gxA3dIRIelsEYIFhwls0S7if-R_Ax8dpxc</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Taylor, Amy E.</creator><creator>Davies, Neil M.</creator><creator>Ware, Jennifer J.</creator><creator>VanderWeele, Tyler</creator><creator>Smith, George Davey</creator><creator>Munafò, Marcus R.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4049-993X</orcidid></search><sort><creationdate>20140301</creationdate><title>Mendelian randomization in health research: Using appropriate genetic variants and avoiding biased estimates</title><author>Taylor, Amy E. ; Davies, Neil M. ; Ware, Jennifer J. ; VanderWeele, Tyler ; Smith, George Davey ; Munafò, Marcus R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c581t-d6f4fae8544f78df8d9ffb88c88c3c99fee89bc1117ccd73ff367bf707d72cd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bias</topic><topic>Causal inference</topic><topic>Causality</topic><topic>Confounding Factors, Epidemiologic</topic><topic>Genome-Wide Association Study - methods</topic><topic>Humans</topic><topic>Instrumental variable</topic><topic>Mendelian randomization</topic><topic>Mendelian Randomization Analysis - methods</topic><topic>Research Design</topic><topic>Smoking</topic><topic>Smoking - genetics</topic><topic>Tobacco</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Amy E.</creatorcontrib><creatorcontrib>Davies, Neil M.</creatorcontrib><creatorcontrib>Ware, Jennifer J.</creatorcontrib><creatorcontrib>VanderWeele, Tyler</creatorcontrib><creatorcontrib>Smith, George Davey</creatorcontrib><creatorcontrib>Munafò, Marcus R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Economics and human biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Amy E.</au><au>Davies, Neil M.</au><au>Ware, Jennifer J.</au><au>VanderWeele, Tyler</au><au>Smith, George Davey</au><au>Munafò, Marcus R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mendelian randomization in health research: Using appropriate genetic variants and avoiding biased estimates</atitle><jtitle>Economics and human biology</jtitle><addtitle>Econ Hum Biol</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>13</volume><issue>100</issue><spage>99</spage><epage>106</epage><pages>99-106</pages><issn>1570-677X</issn><eissn>1873-6130</eissn><abstract>•We model potential biases that may arise in Mendelian randomization analysis.•Genetic variants should robustly associate with exposures in independent samples.•If not, Mendelian randomization can suggest causality despite no true associations.
Mendelian randomization methods, which use genetic variants as instrumental variables for exposures of interest to overcome problems of confounding and reverse causality, are becoming widespread for assessing causal relationships in epidemiological studies. The main purpose of this paper is to demonstrate how results can be biased if researchers select genetic variants on the basis of their association with the exposure in their own dataset, as often happens in candidate gene analyses. This can lead to estimates that indicate apparent “causal” relationships, despite there being no true effect of the exposure. In addition, we discuss the potential bias in estimates of magnitudes of effect from Mendelian randomization analyses when the measured exposure is a poor proxy for the true underlying exposure. We illustrate these points with specific reference to tobacco research.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>24388127</pmid><doi>10.1016/j.ehb.2013.12.002</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4049-993X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-677X |
ispartof | Economics and human biology, 2014-03, Vol.13 (100), p.99-106 |
issn | 1570-677X 1873-6130 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3989031 |
source | Elsevier |
subjects | Bias Causal inference Causality Confounding Factors, Epidemiologic Genome-Wide Association Study - methods Humans Instrumental variable Mendelian randomization Mendelian Randomization Analysis - methods Research Design Smoking Smoking - genetics Tobacco |
title | Mendelian randomization in health research: Using appropriate genetic variants and avoiding biased estimates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mendelian%20randomization%20in%20health%20research:%20Using%20appropriate%20genetic%20variants%20and%20avoiding%20biased%20estimates&rft.jtitle=Economics%20and%20human%20biology&rft.au=Taylor,%20Amy%20E.&rft.date=2014-03-01&rft.volume=13&rft.issue=100&rft.spage=99&rft.epage=106&rft.pages=99-106&rft.issn=1570-677X&rft.eissn=1873-6130&rft_id=info:doi/10.1016/j.ehb.2013.12.002&rft_dat=%3Cproquest_pubme%3E1502336309%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c581t-d6f4fae8544f78df8d9ffb88c88c3c99fee89bc1117ccd73ff367bf707d72cd03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1502336309&rft_id=info:pmid/24388127&rfr_iscdi=true |