Loading…

Expression of fluorescent proteins in bifidobacteria for analysis of host-microbe interactions

Bifidobacteria are an important component of the human gastrointestinal microbiota and are frequently used as probiotics. The genetic inaccessibility and lack of molecular tools commonly used in other bacteria have hampered a detailed analysis of the genetic determinants of bifidobacteria involved i...

Full description

Saved in:
Bibliographic Details
Published in:Applied and Environmental Microbiology 2014-05, Vol.80 (9), p.2842-2850
Main Authors: Grimm, Verena, Gleinser, Marita, Neu, Caroline, Zhurina, Daria, Riedel, Christian U
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bifidobacteria are an important component of the human gastrointestinal microbiota and are frequently used as probiotics. The genetic inaccessibility and lack of molecular tools commonly used in other bacteria have hampered a detailed analysis of the genetic determinants of bifidobacteria involved in their adaptation to, colonization of, and interaction with the host. In the present study, a range of molecular tools were developed that will allow the closing of some of the gaps in functional analysis of bifidobacteria. A number of promoters were tested for transcriptional activity in Bifidobacterium bifidum S17 using pMDY23, a previously published promoter probe vector. The promoter of the gap gene (Pgap) of B. bifidum S17 yielded the highest promoter activity among the promoters tested. Thus, this promoter and the pMDY23 backbone were used to construct a range of vectors for expression of different fluorescent proteins (FPs). Successful expression of cyan fluorescent protein (CFP), green fluorescent protein (GFP), yellow fluorescent protein (YFP), and mCherry could be shown for three strains representing three different Bifidobacterium spp. The red fluorescent B. bifidum S17/pVG-mCherry was further used to demonstrate application of fluorescent bifidobacteria for adhesion assays and detection in primary human macrophages cultured in vitro. Furthermore, pMGC-mCherry was cloned by combining a chloramphenicol resistance marker and expression of the FP mCherry under the control of Pgap. The chloramphenicol resistance marker of pMGC-mCherry was successfully used to determine gastrointestinal transit time of B. bifidum S17. Moreover, B. bifidum S17/pMGC-mCherry could be detected in fecal samples of mice after oral administration.
ISSN:0099-2240
1098-5336
1098-6596
DOI:10.1128/AEM.04261-13