Loading…

A System of RNA Modifications and Biased Codon Use Controls Cellular Stress Response at the Level of Translation

Cells respond to environmental stressors and xenobiotic exposures using regulatory networks to control gene expression, and there is an emerging appreciation for the role of numerous postsynthetic chemical modifications of DNA, RNA, and proteins in controlling transcription and translation of the st...

Full description

Saved in:
Bibliographic Details
Published in:Chemical research in toxicology 2014-03, Vol.27 (3), p.330-337
Main Authors: Dedon, Peter C, Begley, Thomas J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cells respond to environmental stressors and xenobiotic exposures using regulatory networks to control gene expression, and there is an emerging appreciation for the role of numerous postsynthetic chemical modifications of DNA, RNA, and proteins in controlling transcription and translation of the stress response. In this Perspective, we present a model for a new network that regulates the cellular response to xenobiotic exposures and other stresses in which stress-induced reprogramming of a system of dozens of post-transcriptional modifications on tRNA (tRNA) promotes selective translation of codon-biased mRNAs for critical response proteins. As a product of novel genomic and bioanalytical technologies, this model has strong parallels with the regulatory networks of DNA methylation in epigenetics and the variety of protein secondary modifications comprising signaling pathways and the histone code. When present at the tRNA wobble position, the modified ribonucleosides enhance the translation of mRNAs in which the cognate codons of the tRNAs are highly over-represented and that represent critical stress response proteins. A parallel system may also downregulate the translation of families of proteins. Notably, dysregulation of the tRNA methyltransferase enzymes in humans has also been implicated in cancer etiology, with demonstrated oncogenic and tumor-suppressive effects.
ISSN:0893-228X
1520-5010
DOI:10.1021/tx400438d