Loading…

Endothelial integrin α3β1 stabilizes carbohydrate-mediated tumor/endothelial cell adhesion and induces macromolecular signaling complex formation at the endothelial cell membrane

Blood borne metastatic tumor cell adhesion to endothelial cells constitutes a critical rate-limiting step in hematogenous cancer metastasis. Interactions between cancer associated carbohydrate Thomsen-Friedenreich antigen (TF-Ag) and endothelium-expressed galectin-3 (Gal-3) have been identified as t...

Full description

Saved in:
Bibliographic Details
Published in:Oncotarget 2014-03, Vol.5 (5), p.1382-1389
Main Authors: Glinskii, Olga V, Li, Feng, Wilson, Landon S, Barnes, Stephen, Rittenhouse-Olson, Kate, Barchi, Jr, Joseph J, Pienta, Kenneth J, Glinsky, Vladislav V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Blood borne metastatic tumor cell adhesion to endothelial cells constitutes a critical rate-limiting step in hematogenous cancer metastasis. Interactions between cancer associated carbohydrate Thomsen-Friedenreich antigen (TF-Ag) and endothelium-expressed galectin-3 (Gal-3) have been identified as the leading molecular mechanism initiating tumor/endothelial cell adhesion in several types of cancer. However, it is unknown how these rather weak and transient carbohydrate/lectin mediated interactions are stabilized. Here, using Western blot and LC tandem mass spectrometry analyses of pull-downs utilizing TF-Ag loaded gold nanoparticles, we identified Gal-3, endothelial integrin α3β1, Src kinase, as well as 5 additional molecules mapping onto focal adhesion pathway as parts of the macromolecular complexes formed at the endothelial cell membranes downstream of TF-Ag/Gal-3 interactions. In a modified parallel flow chamber assay, inhibiting α3β1 integrin greatly reduced the strength of tumor/endothelial cell interactions without affecting the initial cancer cell adhesion. Further, the macromolecular complex induced by TF-Ag/Gal-3/α3β1 interactions activates Src kinase, p38, and ERK1/2, pathways in endothelial cells in a time- and α3β1-dependent manner. We conclude that, following the initial metastatic cell attachment to endothelial cells mediated by TF-Ag/Gal-3 interactions, endothelial integrin α3β1 stabilizes tumor/endothelial cell adhesion and induces the formation of macromolecular signaling complex activating several major signaling pathways in endothelial cells.
ISSN:1949-2553
1949-2553
DOI:10.18632/oncotarget.1837