Loading…

Contribution of Hepatic Lineage Stage-Specific Donor Memory to the Differential Potential of Induced Mouse Pluripotent Stem Cells

Recent studies suggested that induced pluripotent stem cells (iPSCs) retain a residual donor cell gene expression, which may impact their capacity to differentiate into cell of origin. Here, we addressed a contribution of a lineage stage‐specific donor cell memory in modulating the functional proper...

Full description

Saved in:
Bibliographic Details
Published in:Stem cells (Dayton, Ohio) Ohio), 2012-05, Vol.30 (5), p.997-1007
Main Authors: Lee, Seung Bum, Seo, Daekwan, Choi, Dongho, Park, Kye-Yoon, Holczbauer, Agnes, Marquardt, Jens U., Conner, Elizabeth A., Factor, Valentina M., Thorgeirsson, Snorri S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent studies suggested that induced pluripotent stem cells (iPSCs) retain a residual donor cell gene expression, which may impact their capacity to differentiate into cell of origin. Here, we addressed a contribution of a lineage stage‐specific donor cell memory in modulating the functional properties of iPSCs. iPSCs were generated from hepatic lineage cells at an early (hepatoblast‐derived, HB‐iPSCs) and end stage (adult hepatocyte, AH‐iPSCs) of hepatocyte differentiation as well as from mouse embryonic fibroblasts (MEFs‐iPSCs) using a lentiviral vector encoding four pluripotency‐inducing factors Oct4, Sox2, Klf4, and c‐Myc. All resulting iPSC lines acquired iPSCs phenotype as judged by the accepted criteria including morphology, expression of pluripotency markers, silencing of transducing factors, capacity of multilineage differentiation in teratoma assay, and normal diploid karyotype. However, HB‐iPSCs were more efficient in directed differentiation toward hepatocytic lineage as compared to AH‐iPSCs, MEF‐iPSCs, or mouse embryonic stem cells (mESCs). Extensive comparative transcriptome analyses of the early passage iPSCs, donor cells, and mESCs revealed that despite global similarities in gene expression patterns between generated iPSCs and mESCs, HB‐iPSCs retained a transcriptional memory (seven upregulated and 17 downregulated genes) typical of the original cells. Continuous passaging of HB‐iPSCs erased most of these differences including a superior capacity for hepatic redifferentiation. These results suggest that retention of lineage stage‐specific donor memory in iPSCs may facilitate differentiation into donor cell type. The identified gene set may help to improve hepatic differentiation for therapeutic applications and contribute to the better understanding of liver development. STEM CELLS 2012;30:997–1007
ISSN:1066-5099
1549-4918
DOI:10.1002/stem.1074