Loading…

Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton

In this study, we used comparative metaproteomics to investigate the metabolic activity of microbial plankton inhabiting a seasonally hypoxic basin in the Northwest Atlantic Ocean (Bedford Basin). From winter to spring, we observed a seasonal increase in high-affinity membrane transport proteins inv...

Full description

Saved in:
Bibliographic Details
Published in:The ISME Journal 2014-06, Vol.8 (6), p.1301-1313
Main Authors: Georges, Anna A, El-Swais, Heba, Craig, Susanne E, Li, William KW, Walsh, David A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we used comparative metaproteomics to investigate the metabolic activity of microbial plankton inhabiting a seasonally hypoxic basin in the Northwest Atlantic Ocean (Bedford Basin). From winter to spring, we observed a seasonal increase in high-affinity membrane transport proteins involved in scavenging of organic substrates; Rhodobacterales transporters were strongly associated with the spring phytoplankton bloom, whereas SAR11 transporters were abundant in the underlying waters. A diverse array of transporters for organic compounds were similar to the SAR324 clade, revealing an active heterotrophic lifestyle in coastal waters. Proteins involved in methanol oxidation (from the OM43 clade) and carbon monoxide (from a wide variety of bacteria) were identified throughout Bedford Basin. Metabolic niche partitioning between the SUP05 and ARCTIC96BD-19 clades, which together comprise the Gamma-proteobacterial sulfur oxidizers group was apparent. ARCTIC96BD-19 proteins involved in the transport of organic compounds indicated that in productive coastal waters this lineage tends toward a heterotrophic metabolism. In contrast, the identification of sulfur oxidation proteins from SUP05 indicated the use of reduced sulfur as an energy source in hypoxic bottom water. We identified an abundance of Marine Group I Thaumarchaeota proteins in the hypoxic deep layer, including proteins for nitrification and carbon fixation. No transporters for organic compounds were detected among the thaumarchaeal proteins, suggesting a reliance on autotrophic carbon assimilation. In summary, our analyses revealed the spatiotemporal structure of numerous metabolic activities in the coastal ocean that are central to carbon, nitrogen and sulfur cycling in the sea.
ISSN:1751-7362
1751-7370
DOI:10.1038/ismej.2013.234