Loading…

Site-specific Nitration of Apolipoprotein A-I at Tyrosine 166 Is Both Abundant within Human Atherosclerotic Plaque and Dysfunctional

We reported previously that apolipoprotein A-I (apoA-I) is oxidatively modified in the artery wall at tyrosine 166 (Tyr166), serving as a preferred site for post-translational modification through nitration. Recent studies, however, question the extent and functional importance of apoA-I Tyr166 nitr...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2014-04, Vol.289 (15), p.10276-10292
Main Authors: DiDonato, Joseph A., Aulak, Kulwant, Huang, Ying, Wagner, Matthew, Gerstenecker, Gary, Topbas, Celalettin, Gogonea, Valentin, DiDonato, Anthony J., Tang, W.H.Wilson, Mehl, Ryan A., Fox, Paul L., Plow, Edward F., Smith, Jonathan D., Fisher, Edward A., Hazen, Stanley L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c555t-31b68eb529ff6748527e0d796ad0765b56f8ecf7b3b14aba8ff9f0d97d34a0183
cites cdi_FETCH-LOGICAL-c555t-31b68eb529ff6748527e0d796ad0765b56f8ecf7b3b14aba8ff9f0d97d34a0183
container_end_page 10292
container_issue 15
container_start_page 10276
container_title The Journal of biological chemistry
container_volume 289
creator DiDonato, Joseph A.
Aulak, Kulwant
Huang, Ying
Wagner, Matthew
Gerstenecker, Gary
Topbas, Celalettin
Gogonea, Valentin
DiDonato, Anthony J.
Tang, W.H.Wilson
Mehl, Ryan A.
Fox, Paul L.
Plow, Edward F.
Smith, Jonathan D.
Fisher, Edward A.
Hazen, Stanley L.
description We reported previously that apolipoprotein A-I (apoA-I) is oxidatively modified in the artery wall at tyrosine 166 (Tyr166), serving as a preferred site for post-translational modification through nitration. Recent studies, however, question the extent and functional importance of apoA-I Tyr166 nitration based upon studies of HDL-like particles recovered from atherosclerotic lesions. We developed a monoclonal antibody (mAb 4G11.2) that recognizes, in both free and HDL-bound forms, apoA-I harboring a 3-nitrotyrosine at position 166 apoA-I (NO2-Tyr166-apoA-I) to investigate the presence, distribution, and function of this modified apoA-I form in atherosclerotic and normal artery wall. We also developed recombinant apoA-I with site-specific 3-nitrotyrosine incorporation only at position 166 using an evolved orthogonal nitro-Tyr-aminoacyl-tRNA synthetase/tRNACUA pair for functional studies. Studies with mAb 4G11.2 showed that NO2-Tyr166-apoA-I was easily detected in atherosclerotic human coronary arteries and accounted for ∼8% of total apoA-I within the artery wall but was nearly undetectable (>100-fold less) in normal coronary arteries. Buoyant density ultracentrifugation analyses showed that NO2-Tyr166-apoA-I existed as a lipid-poor lipoprotein with
doi_str_mv 10.1074/jbc.M114.556506
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4036153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820402996</els_id><sourcerecordid>1516395999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-31b68eb529ff6748527e0d796ad0765b56f8ecf7b3b14aba8ff9f0d97d34a0183</originalsourceid><addsrcrecordid>eNp1kT1vFDEQhi0EIpeEmg65pNmLvV571w3SERJyUviQEiQ6y2uPOUd79rL2JrqeH45PFyIomMJT-Jl3Pl6EXlOypKRtzu56s_xEabPkXHAinqEFJR2rGKffn6MFITWtZM27I3Sc0h0p0Uj6Eh3VDecdYd0C_brxGao0gvHOG_zZ50lnHwOODq_GOPgxjlPM4ANeVWusM77dTTH5AJgKgdcJv495g1f9HKwOGT_4vCns1bzVpSJvoMBmKG8u6l8H_XMGrIPFH3bJzcHsW-nhFL1wekjw6jGfoG-XF7fnV9X1l4_r89V1ZTjnuWK0Fx30vJbOibbpeN0Csa0U2pJW8J4L14Fxbc962uhed85JR6xsLWs0oR07Qe8OuuPcb8EaCGXbQY2T3-ppp6L26t-f4DfqR7xXDWGCclYE3j4KTLFskrLa-mRgGHSAOCdFORVMcillQc8OqCkXSBO4pzaUqL13qnin9t6pg3el4s3f0z3xf8wqgDwAUG5072FSyXgIBqyfwGRlo_-v-G86r6tI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1516395999</pqid></control><display><type>article</type><title>Site-specific Nitration of Apolipoprotein A-I at Tyrosine 166 Is Both Abundant within Human Atherosclerotic Plaque and Dysfunctional</title><source>NCBI_PubMed Central(免费)</source><source>ScienceDirect (Online service)</source><creator>DiDonato, Joseph A. ; Aulak, Kulwant ; Huang, Ying ; Wagner, Matthew ; Gerstenecker, Gary ; Topbas, Celalettin ; Gogonea, Valentin ; DiDonato, Anthony J. ; Tang, W.H.Wilson ; Mehl, Ryan A. ; Fox, Paul L. ; Plow, Edward F. ; Smith, Jonathan D. ; Fisher, Edward A. ; Hazen, Stanley L.</creator><creatorcontrib>DiDonato, Joseph A. ; Aulak, Kulwant ; Huang, Ying ; Wagner, Matthew ; Gerstenecker, Gary ; Topbas, Celalettin ; Gogonea, Valentin ; DiDonato, Anthony J. ; Tang, W.H.Wilson ; Mehl, Ryan A. ; Fox, Paul L. ; Plow, Edward F. ; Smith, Jonathan D. ; Fisher, Edward A. ; Hazen, Stanley L.</creatorcontrib><description>We reported previously that apolipoprotein A-I (apoA-I) is oxidatively modified in the artery wall at tyrosine 166 (Tyr166), serving as a preferred site for post-translational modification through nitration. Recent studies, however, question the extent and functional importance of apoA-I Tyr166 nitration based upon studies of HDL-like particles recovered from atherosclerotic lesions. We developed a monoclonal antibody (mAb 4G11.2) that recognizes, in both free and HDL-bound forms, apoA-I harboring a 3-nitrotyrosine at position 166 apoA-I (NO2-Tyr166-apoA-I) to investigate the presence, distribution, and function of this modified apoA-I form in atherosclerotic and normal artery wall. We also developed recombinant apoA-I with site-specific 3-nitrotyrosine incorporation only at position 166 using an evolved orthogonal nitro-Tyr-aminoacyl-tRNA synthetase/tRNACUA pair for functional studies. Studies with mAb 4G11.2 showed that NO2-Tyr166-apoA-I was easily detected in atherosclerotic human coronary arteries and accounted for ∼8% of total apoA-I within the artery wall but was nearly undetectable (&gt;100-fold less) in normal coronary arteries. Buoyant density ultracentrifugation analyses showed that NO2-Tyr166-apoA-I existed as a lipid-poor lipoprotein with &lt;3% recovered within the HDL-like fraction (d = 1.063–1.21). NO2-Tyr166-apoA-I in plasma showed a similar distribution. Recovery of NO2-Tyr166-apoA-I using immobilized mAb 4G11.2 showed an apoA-I form with 88.1 ± 8.5% reduction in lecithin-cholesterol acyltransferase activity, a finding corroborated using a recombinant apoA-I specifically designed to include the unnatural amino acid exclusively at position 166. Thus, site-specific nitration of apoA-I at Tyr166 is an abundant modification within the artery wall that results in selective functional impairments. Plasma levels of this modified apoA-I form may provide insights into a pathophysiological process within the diseased artery wall. Background: The functional importance of apolipoprotein A-I (apoA-I) nitration at tyrosine 166 (Tyr166) in vivo is controversial. Results: Nitrotyrosine 166-apoA-I accounts for 8% of apoA-I within human atheroma, is not HDL-associated, and is functionally impaired. Conclusion: Buoyant density ultracentrifugation of HDL can lead to erroneous results, particularly with modified apoA-I forms. Significance: Detection and quantification of nitrotyrosine 166-apoA-I may provide insights into a pathophysiological process within the artery wall.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M114.556506</identifier><identifier>PMID: 24558038</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aminoacyl-tRNA Synthetase ; Animals ; Antibodies, Monoclonal - chemistry ; Aorta - metabolism ; Apolipoprotein A-I - metabolism ; Apolipoproteins ; Atherosclerosis ; Coronary Vessels - pathology ; Dysfunctional HDL ; Escherichia coli - metabolism ; Humans ; Male ; Mice ; Mice, Inbred BALB C ; Molecular Bases of Disease ; Nitrotyrosine ; Orthogonal Amino Acid ; Peroxidase ; Peroxidases - metabolism ; Plaque, Atherosclerotic - metabolism ; Post-translational Modification ; Protein Nitration ; Protein Processing, Post-Translational ; Reactive Nitrogen Species ; Recombinant Proteins - metabolism ; Tyrosine - analogs &amp; derivatives ; Tyrosine - metabolism ; Ultracentrifugation ; Unnatural Amino Acid (uAA)</subject><ispartof>The Journal of biological chemistry, 2014-04, Vol.289 (15), p.10276-10292</ispartof><rights>2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-31b68eb529ff6748527e0d796ad0765b56f8ecf7b3b14aba8ff9f0d97d34a0183</citedby><cites>FETCH-LOGICAL-c555t-31b68eb529ff6748527e0d796ad0765b56f8ecf7b3b14aba8ff9f0d97d34a0183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4036153/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820402996$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24558038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DiDonato, Joseph A.</creatorcontrib><creatorcontrib>Aulak, Kulwant</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><creatorcontrib>Wagner, Matthew</creatorcontrib><creatorcontrib>Gerstenecker, Gary</creatorcontrib><creatorcontrib>Topbas, Celalettin</creatorcontrib><creatorcontrib>Gogonea, Valentin</creatorcontrib><creatorcontrib>DiDonato, Anthony J.</creatorcontrib><creatorcontrib>Tang, W.H.Wilson</creatorcontrib><creatorcontrib>Mehl, Ryan A.</creatorcontrib><creatorcontrib>Fox, Paul L.</creatorcontrib><creatorcontrib>Plow, Edward F.</creatorcontrib><creatorcontrib>Smith, Jonathan D.</creatorcontrib><creatorcontrib>Fisher, Edward A.</creatorcontrib><creatorcontrib>Hazen, Stanley L.</creatorcontrib><title>Site-specific Nitration of Apolipoprotein A-I at Tyrosine 166 Is Both Abundant within Human Atherosclerotic Plaque and Dysfunctional</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>We reported previously that apolipoprotein A-I (apoA-I) is oxidatively modified in the artery wall at tyrosine 166 (Tyr166), serving as a preferred site for post-translational modification through nitration. Recent studies, however, question the extent and functional importance of apoA-I Tyr166 nitration based upon studies of HDL-like particles recovered from atherosclerotic lesions. We developed a monoclonal antibody (mAb 4G11.2) that recognizes, in both free and HDL-bound forms, apoA-I harboring a 3-nitrotyrosine at position 166 apoA-I (NO2-Tyr166-apoA-I) to investigate the presence, distribution, and function of this modified apoA-I form in atherosclerotic and normal artery wall. We also developed recombinant apoA-I with site-specific 3-nitrotyrosine incorporation only at position 166 using an evolved orthogonal nitro-Tyr-aminoacyl-tRNA synthetase/tRNACUA pair for functional studies. Studies with mAb 4G11.2 showed that NO2-Tyr166-apoA-I was easily detected in atherosclerotic human coronary arteries and accounted for ∼8% of total apoA-I within the artery wall but was nearly undetectable (&gt;100-fold less) in normal coronary arteries. Buoyant density ultracentrifugation analyses showed that NO2-Tyr166-apoA-I existed as a lipid-poor lipoprotein with &lt;3% recovered within the HDL-like fraction (d = 1.063–1.21). NO2-Tyr166-apoA-I in plasma showed a similar distribution. Recovery of NO2-Tyr166-apoA-I using immobilized mAb 4G11.2 showed an apoA-I form with 88.1 ± 8.5% reduction in lecithin-cholesterol acyltransferase activity, a finding corroborated using a recombinant apoA-I specifically designed to include the unnatural amino acid exclusively at position 166. Thus, site-specific nitration of apoA-I at Tyr166 is an abundant modification within the artery wall that results in selective functional impairments. Plasma levels of this modified apoA-I form may provide insights into a pathophysiological process within the diseased artery wall. Background: The functional importance of apolipoprotein A-I (apoA-I) nitration at tyrosine 166 (Tyr166) in vivo is controversial. Results: Nitrotyrosine 166-apoA-I accounts for 8% of apoA-I within human atheroma, is not HDL-associated, and is functionally impaired. Conclusion: Buoyant density ultracentrifugation of HDL can lead to erroneous results, particularly with modified apoA-I forms. Significance: Detection and quantification of nitrotyrosine 166-apoA-I may provide insights into a pathophysiological process within the artery wall.</description><subject>Aminoacyl-tRNA Synthetase</subject><subject>Animals</subject><subject>Antibodies, Monoclonal - chemistry</subject><subject>Aorta - metabolism</subject><subject>Apolipoprotein A-I - metabolism</subject><subject>Apolipoproteins</subject><subject>Atherosclerosis</subject><subject>Coronary Vessels - pathology</subject><subject>Dysfunctional HDL</subject><subject>Escherichia coli - metabolism</subject><subject>Humans</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Molecular Bases of Disease</subject><subject>Nitrotyrosine</subject><subject>Orthogonal Amino Acid</subject><subject>Peroxidase</subject><subject>Peroxidases - metabolism</subject><subject>Plaque, Atherosclerotic - metabolism</subject><subject>Post-translational Modification</subject><subject>Protein Nitration</subject><subject>Protein Processing, Post-Translational</subject><subject>Reactive Nitrogen Species</subject><subject>Recombinant Proteins - metabolism</subject><subject>Tyrosine - analogs &amp; derivatives</subject><subject>Tyrosine - metabolism</subject><subject>Ultracentrifugation</subject><subject>Unnatural Amino Acid (uAA)</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kT1vFDEQhi0EIpeEmg65pNmLvV571w3SERJyUviQEiQ6y2uPOUd79rL2JrqeH45PFyIomMJT-Jl3Pl6EXlOypKRtzu56s_xEabPkXHAinqEFJR2rGKffn6MFITWtZM27I3Sc0h0p0Uj6Eh3VDecdYd0C_brxGao0gvHOG_zZ50lnHwOODq_GOPgxjlPM4ANeVWusM77dTTH5AJgKgdcJv495g1f9HKwOGT_4vCns1bzVpSJvoMBmKG8u6l8H_XMGrIPFH3bJzcHsW-nhFL1wekjw6jGfoG-XF7fnV9X1l4_r89V1ZTjnuWK0Fx30vJbOibbpeN0Csa0U2pJW8J4L14Fxbc962uhed85JR6xsLWs0oR07Qe8OuuPcb8EaCGXbQY2T3-ppp6L26t-f4DfqR7xXDWGCclYE3j4KTLFskrLa-mRgGHSAOCdFORVMcillQc8OqCkXSBO4pzaUqL13qnin9t6pg3el4s3f0z3xf8wqgDwAUG5072FSyXgIBqyfwGRlo_-v-G86r6tI</recordid><startdate>20140411</startdate><enddate>20140411</enddate><creator>DiDonato, Joseph A.</creator><creator>Aulak, Kulwant</creator><creator>Huang, Ying</creator><creator>Wagner, Matthew</creator><creator>Gerstenecker, Gary</creator><creator>Topbas, Celalettin</creator><creator>Gogonea, Valentin</creator><creator>DiDonato, Anthony J.</creator><creator>Tang, W.H.Wilson</creator><creator>Mehl, Ryan A.</creator><creator>Fox, Paul L.</creator><creator>Plow, Edward F.</creator><creator>Smith, Jonathan D.</creator><creator>Fisher, Edward A.</creator><creator>Hazen, Stanley L.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140411</creationdate><title>Site-specific Nitration of Apolipoprotein A-I at Tyrosine 166 Is Both Abundant within Human Atherosclerotic Plaque and Dysfunctional</title><author>DiDonato, Joseph A. ; Aulak, Kulwant ; Huang, Ying ; Wagner, Matthew ; Gerstenecker, Gary ; Topbas, Celalettin ; Gogonea, Valentin ; DiDonato, Anthony J. ; Tang, W.H.Wilson ; Mehl, Ryan A. ; Fox, Paul L. ; Plow, Edward F. ; Smith, Jonathan D. ; Fisher, Edward A. ; Hazen, Stanley L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-31b68eb529ff6748527e0d796ad0765b56f8ecf7b3b14aba8ff9f0d97d34a0183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aminoacyl-tRNA Synthetase</topic><topic>Animals</topic><topic>Antibodies, Monoclonal - chemistry</topic><topic>Aorta - metabolism</topic><topic>Apolipoprotein A-I - metabolism</topic><topic>Apolipoproteins</topic><topic>Atherosclerosis</topic><topic>Coronary Vessels - pathology</topic><topic>Dysfunctional HDL</topic><topic>Escherichia coli - metabolism</topic><topic>Humans</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Molecular Bases of Disease</topic><topic>Nitrotyrosine</topic><topic>Orthogonal Amino Acid</topic><topic>Peroxidase</topic><topic>Peroxidases - metabolism</topic><topic>Plaque, Atherosclerotic - metabolism</topic><topic>Post-translational Modification</topic><topic>Protein Nitration</topic><topic>Protein Processing, Post-Translational</topic><topic>Reactive Nitrogen Species</topic><topic>Recombinant Proteins - metabolism</topic><topic>Tyrosine - analogs &amp; derivatives</topic><topic>Tyrosine - metabolism</topic><topic>Ultracentrifugation</topic><topic>Unnatural Amino Acid (uAA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DiDonato, Joseph A.</creatorcontrib><creatorcontrib>Aulak, Kulwant</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><creatorcontrib>Wagner, Matthew</creatorcontrib><creatorcontrib>Gerstenecker, Gary</creatorcontrib><creatorcontrib>Topbas, Celalettin</creatorcontrib><creatorcontrib>Gogonea, Valentin</creatorcontrib><creatorcontrib>DiDonato, Anthony J.</creatorcontrib><creatorcontrib>Tang, W.H.Wilson</creatorcontrib><creatorcontrib>Mehl, Ryan A.</creatorcontrib><creatorcontrib>Fox, Paul L.</creatorcontrib><creatorcontrib>Plow, Edward F.</creatorcontrib><creatorcontrib>Smith, Jonathan D.</creatorcontrib><creatorcontrib>Fisher, Edward A.</creatorcontrib><creatorcontrib>Hazen, Stanley L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DiDonato, Joseph A.</au><au>Aulak, Kulwant</au><au>Huang, Ying</au><au>Wagner, Matthew</au><au>Gerstenecker, Gary</au><au>Topbas, Celalettin</au><au>Gogonea, Valentin</au><au>DiDonato, Anthony J.</au><au>Tang, W.H.Wilson</au><au>Mehl, Ryan A.</au><au>Fox, Paul L.</au><au>Plow, Edward F.</au><au>Smith, Jonathan D.</au><au>Fisher, Edward A.</au><au>Hazen, Stanley L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site-specific Nitration of Apolipoprotein A-I at Tyrosine 166 Is Both Abundant within Human Atherosclerotic Plaque and Dysfunctional</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2014-04-11</date><risdate>2014</risdate><volume>289</volume><issue>15</issue><spage>10276</spage><epage>10292</epage><pages>10276-10292</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>We reported previously that apolipoprotein A-I (apoA-I) is oxidatively modified in the artery wall at tyrosine 166 (Tyr166), serving as a preferred site for post-translational modification through nitration. Recent studies, however, question the extent and functional importance of apoA-I Tyr166 nitration based upon studies of HDL-like particles recovered from atherosclerotic lesions. We developed a monoclonal antibody (mAb 4G11.2) that recognizes, in both free and HDL-bound forms, apoA-I harboring a 3-nitrotyrosine at position 166 apoA-I (NO2-Tyr166-apoA-I) to investigate the presence, distribution, and function of this modified apoA-I form in atherosclerotic and normal artery wall. We also developed recombinant apoA-I with site-specific 3-nitrotyrosine incorporation only at position 166 using an evolved orthogonal nitro-Tyr-aminoacyl-tRNA synthetase/tRNACUA pair for functional studies. Studies with mAb 4G11.2 showed that NO2-Tyr166-apoA-I was easily detected in atherosclerotic human coronary arteries and accounted for ∼8% of total apoA-I within the artery wall but was nearly undetectable (&gt;100-fold less) in normal coronary arteries. Buoyant density ultracentrifugation analyses showed that NO2-Tyr166-apoA-I existed as a lipid-poor lipoprotein with &lt;3% recovered within the HDL-like fraction (d = 1.063–1.21). NO2-Tyr166-apoA-I in plasma showed a similar distribution. Recovery of NO2-Tyr166-apoA-I using immobilized mAb 4G11.2 showed an apoA-I form with 88.1 ± 8.5% reduction in lecithin-cholesterol acyltransferase activity, a finding corroborated using a recombinant apoA-I specifically designed to include the unnatural amino acid exclusively at position 166. Thus, site-specific nitration of apoA-I at Tyr166 is an abundant modification within the artery wall that results in selective functional impairments. Plasma levels of this modified apoA-I form may provide insights into a pathophysiological process within the diseased artery wall. Background: The functional importance of apolipoprotein A-I (apoA-I) nitration at tyrosine 166 (Tyr166) in vivo is controversial. Results: Nitrotyrosine 166-apoA-I accounts for 8% of apoA-I within human atheroma, is not HDL-associated, and is functionally impaired. Conclusion: Buoyant density ultracentrifugation of HDL can lead to erroneous results, particularly with modified apoA-I forms. Significance: Detection and quantification of nitrotyrosine 166-apoA-I may provide insights into a pathophysiological process within the artery wall.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24558038</pmid><doi>10.1074/jbc.M114.556506</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2014-04, Vol.289 (15), p.10276-10292
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4036153
source NCBI_PubMed Central(免费); ScienceDirect (Online service)
subjects Aminoacyl-tRNA Synthetase
Animals
Antibodies, Monoclonal - chemistry
Aorta - metabolism
Apolipoprotein A-I - metabolism
Apolipoproteins
Atherosclerosis
Coronary Vessels - pathology
Dysfunctional HDL
Escherichia coli - metabolism
Humans
Male
Mice
Mice, Inbred BALB C
Molecular Bases of Disease
Nitrotyrosine
Orthogonal Amino Acid
Peroxidase
Peroxidases - metabolism
Plaque, Atherosclerotic - metabolism
Post-translational Modification
Protein Nitration
Protein Processing, Post-Translational
Reactive Nitrogen Species
Recombinant Proteins - metabolism
Tyrosine - analogs & derivatives
Tyrosine - metabolism
Ultracentrifugation
Unnatural Amino Acid (uAA)
title Site-specific Nitration of Apolipoprotein A-I at Tyrosine 166 Is Both Abundant within Human Atherosclerotic Plaque and Dysfunctional
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site-specific%20Nitration%20of%20Apolipoprotein%20A-I%20at%20Tyrosine%20166%20Is%20Both%20Abundant%20within%20Human%20Atherosclerotic%20Plaque%20and%20Dysfunctional&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=DiDonato,%20Joseph%20A.&rft.date=2014-04-11&rft.volume=289&rft.issue=15&rft.spage=10276&rft.epage=10292&rft.pages=10276-10292&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M114.556506&rft_dat=%3Cproquest_pubme%3E1516395999%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c555t-31b68eb529ff6748527e0d796ad0765b56f8ecf7b3b14aba8ff9f0d97d34a0183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1516395999&rft_id=info:pmid/24558038&rfr_iscdi=true