Loading…

An improved method for calibrating time-of-flight Laue single-crystal neutron diffractometers

A robust and comprehensive method for determining the orientation matrix of a single‐crystal sample using the neutron Laue time‐of‐flight (TOF) technique is described. The new method enables the measurement of the unit‐cell parameters with an uncertainty in the range 0.015–0.06%, depending upon the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied crystallography 2014-06, Vol.47 (3), p.974-983
Main Authors: Bull, Craig L., Johnson, Michael W., Hamidov, Hayrullo, Komatsu, Kazuki, Guthrie, Malcolm, Gutmann, Matthias J., Loveday, John S., Nelmes, Richard J.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6149-4938ecbdda937c4d664afda2a232ee68873655da0495e0aeed1e4c5fa8f020f73
cites
container_end_page 983
container_issue 3
container_start_page 974
container_title Journal of applied crystallography
container_volume 47
creator Bull, Craig L.
Johnson, Michael W.
Hamidov, Hayrullo
Komatsu, Kazuki
Guthrie, Malcolm
Gutmann, Matthias J.
Loveday, John S.
Nelmes, Richard J.
description A robust and comprehensive method for determining the orientation matrix of a single‐crystal sample using the neutron Laue time‐of‐flight (TOF) technique is described. The new method enables the measurement of the unit‐cell parameters with an uncertainty in the range 0.015–0.06%, depending upon the crystal symmetry and the number of reflections measured. The improved technique also facilitates the location and integration of weak reflections, which are often more difficult to discern amongst the increased background at higher energies. The technique uses a mathematical model of the relative positions of all the detector pixels of the instrument, together with a methodology that establishes a reproducible reference frame and a method for determining the parameters of the instrument detector model. Since all neutron TOF instruments require precise detector calibration for their effective use, it is possible that the method described here may be of use on other instruments where the detector calibration cannot be determined by other means.
doi_str_mv 10.1107/S1600576714006657
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4038798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826594107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6149-4938ecbdda937c4d664afda2a232ee68873655da0495e0aeed1e4c5fa8f020f73</originalsourceid><addsrcrecordid>eNqFkU9vEzEQxVcIREvhA3BBK3HhsuD_9l6QSkoDKBSJgpCQkOV4x6nL7jrY3kK-PY5SogKHnmY083tP9ryqeozRc4yRfHGOBUJcCokZQkJweac63I6a7ezujf6gepDSJUJYSELuVweEtYgRxg6rb8dj7Yd1DFfQ1QPki9DVLsTamt4vo8l-XNXZD9AE17jery5yvTAT1Kksemhs3KRs-nqEKccw1p13LhqbQ7GCmB5W95zpEzy6rkfV59PXn2ZvmsWH-dvZ8aKxArO2YS1VYJddZ1oqLeuEYMZ1hhhCCYBQSlLBeWcQazkgA9BhYJY7oxwiyEl6VL3c-a6n5QCdhTFH0-t19IOJGx2M139vRn-hV-FKM0SVbFUxeHZtEMOPCVLWg08W-t6MEKaksSKCt6wc_Xa0xCGQIowX9Ok_6GWY4lguoTGnSCmFKCoU3lE2hpQiuP27MdLbnPV_ORfNk5sf3iv-BFuAdgf89D1sbnfU72Yfyek5R6It2man9SnDr73WxO9aSCq5_nI212dq9v7rq5MTPae_AZNOw7M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530888030</pqid></control><display><type>article</type><title>An improved method for calibrating time-of-flight Laue single-crystal neutron diffractometers</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Bull, Craig L. ; Johnson, Michael W. ; Hamidov, Hayrullo ; Komatsu, Kazuki ; Guthrie, Malcolm ; Gutmann, Matthias J. ; Loveday, John S. ; Nelmes, Richard J.</creator><creatorcontrib>Bull, Craig L. ; Johnson, Michael W. ; Hamidov, Hayrullo ; Komatsu, Kazuki ; Guthrie, Malcolm ; Gutmann, Matthias J. ; Loveday, John S. ; Nelmes, Richard J.</creatorcontrib><description>A robust and comprehensive method for determining the orientation matrix of a single‐crystal sample using the neutron Laue time‐of‐flight (TOF) technique is described. The new method enables the measurement of the unit‐cell parameters with an uncertainty in the range 0.015–0.06%, depending upon the crystal symmetry and the number of reflections measured. The improved technique also facilitates the location and integration of weak reflections, which are often more difficult to discern amongst the increased background at higher energies. The technique uses a mathematical model of the relative positions of all the detector pixels of the instrument, together with a methodology that establishes a reproducible reference frame and a method for determining the parameters of the instrument detector model. Since all neutron TOF instruments require precise detector calibration for their effective use, it is possible that the method described here may be of use on other instruments where the detector calibration cannot be determined by other means.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576714006657</identifier><identifier>PMID: 24904244</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Calibration ; Crystallography ; Crystals ; Diffraction ; Diffractometers ; Mathematical analysis ; Mathematical models ; neutron diffraction ; neutron instruments ; Pixels ; Reflection ; Research Papers ; Scientific apparatus &amp; instruments ; Single crystals ; time-of-flight</subject><ispartof>Journal of applied crystallography, 2014-06, Vol.47 (3), p.974-983</ispartof><rights>Craig L. Bull et al. 2014</rights><rights>Craig L. Bull et al. 2014</rights><rights>Craig L. Bull et al. 2014 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6149-4938ecbdda937c4d664afda2a232ee68873655da0495e0aeed1e4c5fa8f020f73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24904244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bull, Craig L.</creatorcontrib><creatorcontrib>Johnson, Michael W.</creatorcontrib><creatorcontrib>Hamidov, Hayrullo</creatorcontrib><creatorcontrib>Komatsu, Kazuki</creatorcontrib><creatorcontrib>Guthrie, Malcolm</creatorcontrib><creatorcontrib>Gutmann, Matthias J.</creatorcontrib><creatorcontrib>Loveday, John S.</creatorcontrib><creatorcontrib>Nelmes, Richard J.</creatorcontrib><title>An improved method for calibrating time-of-flight Laue single-crystal neutron diffractometers</title><title>Journal of applied crystallography</title><addtitle>Jnl Applied Crystallography</addtitle><description>A robust and comprehensive method for determining the orientation matrix of a single‐crystal sample using the neutron Laue time‐of‐flight (TOF) technique is described. The new method enables the measurement of the unit‐cell parameters with an uncertainty in the range 0.015–0.06%, depending upon the crystal symmetry and the number of reflections measured. The improved technique also facilitates the location and integration of weak reflections, which are often more difficult to discern amongst the increased background at higher energies. The technique uses a mathematical model of the relative positions of all the detector pixels of the instrument, together with a methodology that establishes a reproducible reference frame and a method for determining the parameters of the instrument detector model. Since all neutron TOF instruments require precise detector calibration for their effective use, it is possible that the method described here may be of use on other instruments where the detector calibration cannot be determined by other means.</description><subject>Calibration</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>Diffraction</subject><subject>Diffractometers</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>neutron diffraction</subject><subject>neutron instruments</subject><subject>Pixels</subject><subject>Reflection</subject><subject>Research Papers</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Single crystals</subject><subject>time-of-flight</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU9vEzEQxVcIREvhA3BBK3HhsuD_9l6QSkoDKBSJgpCQkOV4x6nL7jrY3kK-PY5SogKHnmY083tP9ryqeozRc4yRfHGOBUJcCokZQkJweac63I6a7ezujf6gepDSJUJYSELuVweEtYgRxg6rb8dj7Yd1DFfQ1QPki9DVLsTamt4vo8l-XNXZD9AE17jery5yvTAT1Kksemhs3KRs-nqEKccw1p13LhqbQ7GCmB5W95zpEzy6rkfV59PXn2ZvmsWH-dvZ8aKxArO2YS1VYJddZ1oqLeuEYMZ1hhhCCYBQSlLBeWcQazkgA9BhYJY7oxwiyEl6VL3c-a6n5QCdhTFH0-t19IOJGx2M139vRn-hV-FKM0SVbFUxeHZtEMOPCVLWg08W-t6MEKaksSKCt6wc_Xa0xCGQIowX9Ok_6GWY4lguoTGnSCmFKCoU3lE2hpQiuP27MdLbnPV_ORfNk5sf3iv-BFuAdgf89D1sbnfU72Yfyek5R6It2man9SnDr73WxO9aSCq5_nI212dq9v7rq5MTPae_AZNOw7M</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Bull, Craig L.</creator><creator>Johnson, Michael W.</creator><creator>Hamidov, Hayrullo</creator><creator>Komatsu, Kazuki</creator><creator>Guthrie, Malcolm</creator><creator>Gutmann, Matthias J.</creator><creator>Loveday, John S.</creator><creator>Nelmes, Richard J.</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201406</creationdate><title>An improved method for calibrating time-of-flight Laue single-crystal neutron diffractometers</title><author>Bull, Craig L. ; Johnson, Michael W. ; Hamidov, Hayrullo ; Komatsu, Kazuki ; Guthrie, Malcolm ; Gutmann, Matthias J. ; Loveday, John S. ; Nelmes, Richard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6149-4938ecbdda937c4d664afda2a232ee68873655da0495e0aeed1e4c5fa8f020f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Calibration</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>Diffraction</topic><topic>Diffractometers</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>neutron diffraction</topic><topic>neutron instruments</topic><topic>Pixels</topic><topic>Reflection</topic><topic>Research Papers</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Single crystals</topic><topic>time-of-flight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bull, Craig L.</creatorcontrib><creatorcontrib>Johnson, Michael W.</creatorcontrib><creatorcontrib>Hamidov, Hayrullo</creatorcontrib><creatorcontrib>Komatsu, Kazuki</creatorcontrib><creatorcontrib>Guthrie, Malcolm</creatorcontrib><creatorcontrib>Gutmann, Matthias J.</creatorcontrib><creatorcontrib>Loveday, John S.</creatorcontrib><creatorcontrib>Nelmes, Richard J.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bull, Craig L.</au><au>Johnson, Michael W.</au><au>Hamidov, Hayrullo</au><au>Komatsu, Kazuki</au><au>Guthrie, Malcolm</au><au>Gutmann, Matthias J.</au><au>Loveday, John S.</au><au>Nelmes, Richard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved method for calibrating time-of-flight Laue single-crystal neutron diffractometers</atitle><jtitle>Journal of applied crystallography</jtitle><addtitle>Jnl Applied Crystallography</addtitle><date>2014-06</date><risdate>2014</risdate><volume>47</volume><issue>3</issue><spage>974</spage><epage>983</epage><pages>974-983</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>A robust and comprehensive method for determining the orientation matrix of a single‐crystal sample using the neutron Laue time‐of‐flight (TOF) technique is described. The new method enables the measurement of the unit‐cell parameters with an uncertainty in the range 0.015–0.06%, depending upon the crystal symmetry and the number of reflections measured. The improved technique also facilitates the location and integration of weak reflections, which are often more difficult to discern amongst the increased background at higher energies. The technique uses a mathematical model of the relative positions of all the detector pixels of the instrument, together with a methodology that establishes a reproducible reference frame and a method for determining the parameters of the instrument detector model. Since all neutron TOF instruments require precise detector calibration for their effective use, it is possible that the method described here may be of use on other instruments where the detector calibration cannot be determined by other means.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>24904244</pmid><doi>10.1107/S1600576714006657</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1600-5767
ispartof Journal of applied crystallography, 2014-06, Vol.47 (3), p.974-983
issn 1600-5767
0021-8898
1600-5767
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4038798
source Wiley-Blackwell Read & Publish Collection
subjects Calibration
Crystallography
Crystals
Diffraction
Diffractometers
Mathematical analysis
Mathematical models
neutron diffraction
neutron instruments
Pixels
Reflection
Research Papers
Scientific apparatus & instruments
Single crystals
time-of-flight
title An improved method for calibrating time-of-flight Laue single-crystal neutron diffractometers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A27%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20method%20for%20calibrating%20time-of-flight%20Laue%20single-crystal%20neutron%20diffractometers&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Bull,%20Craig%20L.&rft.date=2014-06&rft.volume=47&rft.issue=3&rft.spage=974&rft.epage=983&rft.pages=974-983&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576714006657&rft_dat=%3Cproquest_pubme%3E1826594107%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6149-4938ecbdda937c4d664afda2a232ee68873655da0495e0aeed1e4c5fa8f020f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1530888030&rft_id=info:pmid/24904244&rfr_iscdi=true