Loading…
An improved method for calibrating time-of-flight Laue single-crystal neutron diffractometers
A robust and comprehensive method for determining the orientation matrix of a single‐crystal sample using the neutron Laue time‐of‐flight (TOF) technique is described. The new method enables the measurement of the unit‐cell parameters with an uncertainty in the range 0.015–0.06%, depending upon the...
Saved in:
Published in: | Journal of applied crystallography 2014-06, Vol.47 (3), p.974-983 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6149-4938ecbdda937c4d664afda2a232ee68873655da0495e0aeed1e4c5fa8f020f73 |
---|---|
cites | |
container_end_page | 983 |
container_issue | 3 |
container_start_page | 974 |
container_title | Journal of applied crystallography |
container_volume | 47 |
creator | Bull, Craig L. Johnson, Michael W. Hamidov, Hayrullo Komatsu, Kazuki Guthrie, Malcolm Gutmann, Matthias J. Loveday, John S. Nelmes, Richard J. |
description | A robust and comprehensive method for determining the orientation matrix of a single‐crystal sample using the neutron Laue time‐of‐flight (TOF) technique is described. The new method enables the measurement of the unit‐cell parameters with an uncertainty in the range 0.015–0.06%, depending upon the crystal symmetry and the number of reflections measured. The improved technique also facilitates the location and integration of weak reflections, which are often more difficult to discern amongst the increased background at higher energies. The technique uses a mathematical model of the relative positions of all the detector pixels of the instrument, together with a methodology that establishes a reproducible reference frame and a method for determining the parameters of the instrument detector model. Since all neutron TOF instruments require precise detector calibration for their effective use, it is possible that the method described here may be of use on other instruments where the detector calibration cannot be determined by other means. |
doi_str_mv | 10.1107/S1600576714006657 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4038798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826594107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6149-4938ecbdda937c4d664afda2a232ee68873655da0495e0aeed1e4c5fa8f020f73</originalsourceid><addsrcrecordid>eNqFkU9vEzEQxVcIREvhA3BBK3HhsuD_9l6QSkoDKBSJgpCQkOV4x6nL7jrY3kK-PY5SogKHnmY083tP9ryqeozRc4yRfHGOBUJcCokZQkJweac63I6a7ezujf6gepDSJUJYSELuVweEtYgRxg6rb8dj7Yd1DFfQ1QPki9DVLsTamt4vo8l-XNXZD9AE17jery5yvTAT1Kksemhs3KRs-nqEKccw1p13LhqbQ7GCmB5W95zpEzy6rkfV59PXn2ZvmsWH-dvZ8aKxArO2YS1VYJddZ1oqLeuEYMZ1hhhCCYBQSlLBeWcQazkgA9BhYJY7oxwiyEl6VL3c-a6n5QCdhTFH0-t19IOJGx2M139vRn-hV-FKM0SVbFUxeHZtEMOPCVLWg08W-t6MEKaksSKCt6wc_Xa0xCGQIowX9Ok_6GWY4lguoTGnSCmFKCoU3lE2hpQiuP27MdLbnPV_ORfNk5sf3iv-BFuAdgf89D1sbnfU72Yfyek5R6It2man9SnDr73WxO9aSCq5_nI212dq9v7rq5MTPae_AZNOw7M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530888030</pqid></control><display><type>article</type><title>An improved method for calibrating time-of-flight Laue single-crystal neutron diffractometers</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Bull, Craig L. ; Johnson, Michael W. ; Hamidov, Hayrullo ; Komatsu, Kazuki ; Guthrie, Malcolm ; Gutmann, Matthias J. ; Loveday, John S. ; Nelmes, Richard J.</creator><creatorcontrib>Bull, Craig L. ; Johnson, Michael W. ; Hamidov, Hayrullo ; Komatsu, Kazuki ; Guthrie, Malcolm ; Gutmann, Matthias J. ; Loveday, John S. ; Nelmes, Richard J.</creatorcontrib><description>A robust and comprehensive method for determining the orientation matrix of a single‐crystal sample using the neutron Laue time‐of‐flight (TOF) technique is described. The new method enables the measurement of the unit‐cell parameters with an uncertainty in the range 0.015–0.06%, depending upon the crystal symmetry and the number of reflections measured. The improved technique also facilitates the location and integration of weak reflections, which are often more difficult to discern amongst the increased background at higher energies. The technique uses a mathematical model of the relative positions of all the detector pixels of the instrument, together with a methodology that establishes a reproducible reference frame and a method for determining the parameters of the instrument detector model. Since all neutron TOF instruments require precise detector calibration for their effective use, it is possible that the method described here may be of use on other instruments where the detector calibration cannot be determined by other means.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576714006657</identifier><identifier>PMID: 24904244</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Calibration ; Crystallography ; Crystals ; Diffraction ; Diffractometers ; Mathematical analysis ; Mathematical models ; neutron diffraction ; neutron instruments ; Pixels ; Reflection ; Research Papers ; Scientific apparatus & instruments ; Single crystals ; time-of-flight</subject><ispartof>Journal of applied crystallography, 2014-06, Vol.47 (3), p.974-983</ispartof><rights>Craig L. Bull et al. 2014</rights><rights>Craig L. Bull et al. 2014</rights><rights>Craig L. Bull et al. 2014 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6149-4938ecbdda937c4d664afda2a232ee68873655da0495e0aeed1e4c5fa8f020f73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24904244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bull, Craig L.</creatorcontrib><creatorcontrib>Johnson, Michael W.</creatorcontrib><creatorcontrib>Hamidov, Hayrullo</creatorcontrib><creatorcontrib>Komatsu, Kazuki</creatorcontrib><creatorcontrib>Guthrie, Malcolm</creatorcontrib><creatorcontrib>Gutmann, Matthias J.</creatorcontrib><creatorcontrib>Loveday, John S.</creatorcontrib><creatorcontrib>Nelmes, Richard J.</creatorcontrib><title>An improved method for calibrating time-of-flight Laue single-crystal neutron diffractometers</title><title>Journal of applied crystallography</title><addtitle>Jnl Applied Crystallography</addtitle><description>A robust and comprehensive method for determining the orientation matrix of a single‐crystal sample using the neutron Laue time‐of‐flight (TOF) technique is described. The new method enables the measurement of the unit‐cell parameters with an uncertainty in the range 0.015–0.06%, depending upon the crystal symmetry and the number of reflections measured. The improved technique also facilitates the location and integration of weak reflections, which are often more difficult to discern amongst the increased background at higher energies. The technique uses a mathematical model of the relative positions of all the detector pixels of the instrument, together with a methodology that establishes a reproducible reference frame and a method for determining the parameters of the instrument detector model. Since all neutron TOF instruments require precise detector calibration for their effective use, it is possible that the method described here may be of use on other instruments where the detector calibration cannot be determined by other means.</description><subject>Calibration</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>Diffraction</subject><subject>Diffractometers</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>neutron diffraction</subject><subject>neutron instruments</subject><subject>Pixels</subject><subject>Reflection</subject><subject>Research Papers</subject><subject>Scientific apparatus & instruments</subject><subject>Single crystals</subject><subject>time-of-flight</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU9vEzEQxVcIREvhA3BBK3HhsuD_9l6QSkoDKBSJgpCQkOV4x6nL7jrY3kK-PY5SogKHnmY083tP9ryqeozRc4yRfHGOBUJcCokZQkJweac63I6a7ezujf6gepDSJUJYSELuVweEtYgRxg6rb8dj7Yd1DFfQ1QPki9DVLsTamt4vo8l-XNXZD9AE17jery5yvTAT1Kksemhs3KRs-nqEKccw1p13LhqbQ7GCmB5W95zpEzy6rkfV59PXn2ZvmsWH-dvZ8aKxArO2YS1VYJddZ1oqLeuEYMZ1hhhCCYBQSlLBeWcQazkgA9BhYJY7oxwiyEl6VL3c-a6n5QCdhTFH0-t19IOJGx2M139vRn-hV-FKM0SVbFUxeHZtEMOPCVLWg08W-t6MEKaksSKCt6wc_Xa0xCGQIowX9Ok_6GWY4lguoTGnSCmFKCoU3lE2hpQiuP27MdLbnPV_ORfNk5sf3iv-BFuAdgf89D1sbnfU72Yfyek5R6It2man9SnDr73WxO9aSCq5_nI212dq9v7rq5MTPae_AZNOw7M</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Bull, Craig L.</creator><creator>Johnson, Michael W.</creator><creator>Hamidov, Hayrullo</creator><creator>Komatsu, Kazuki</creator><creator>Guthrie, Malcolm</creator><creator>Gutmann, Matthias J.</creator><creator>Loveday, John S.</creator><creator>Nelmes, Richard J.</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201406</creationdate><title>An improved method for calibrating time-of-flight Laue single-crystal neutron diffractometers</title><author>Bull, Craig L. ; Johnson, Michael W. ; Hamidov, Hayrullo ; Komatsu, Kazuki ; Guthrie, Malcolm ; Gutmann, Matthias J. ; Loveday, John S. ; Nelmes, Richard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6149-4938ecbdda937c4d664afda2a232ee68873655da0495e0aeed1e4c5fa8f020f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Calibration</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>Diffraction</topic><topic>Diffractometers</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>neutron diffraction</topic><topic>neutron instruments</topic><topic>Pixels</topic><topic>Reflection</topic><topic>Research Papers</topic><topic>Scientific apparatus & instruments</topic><topic>Single crystals</topic><topic>time-of-flight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bull, Craig L.</creatorcontrib><creatorcontrib>Johnson, Michael W.</creatorcontrib><creatorcontrib>Hamidov, Hayrullo</creatorcontrib><creatorcontrib>Komatsu, Kazuki</creatorcontrib><creatorcontrib>Guthrie, Malcolm</creatorcontrib><creatorcontrib>Gutmann, Matthias J.</creatorcontrib><creatorcontrib>Loveday, John S.</creatorcontrib><creatorcontrib>Nelmes, Richard J.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bull, Craig L.</au><au>Johnson, Michael W.</au><au>Hamidov, Hayrullo</au><au>Komatsu, Kazuki</au><au>Guthrie, Malcolm</au><au>Gutmann, Matthias J.</au><au>Loveday, John S.</au><au>Nelmes, Richard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved method for calibrating time-of-flight Laue single-crystal neutron diffractometers</atitle><jtitle>Journal of applied crystallography</jtitle><addtitle>Jnl Applied Crystallography</addtitle><date>2014-06</date><risdate>2014</risdate><volume>47</volume><issue>3</issue><spage>974</spage><epage>983</epage><pages>974-983</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>A robust and comprehensive method for determining the orientation matrix of a single‐crystal sample using the neutron Laue time‐of‐flight (TOF) technique is described. The new method enables the measurement of the unit‐cell parameters with an uncertainty in the range 0.015–0.06%, depending upon the crystal symmetry and the number of reflections measured. The improved technique also facilitates the location and integration of weak reflections, which are often more difficult to discern amongst the increased background at higher energies. The technique uses a mathematical model of the relative positions of all the detector pixels of the instrument, together with a methodology that establishes a reproducible reference frame and a method for determining the parameters of the instrument detector model. Since all neutron TOF instruments require precise detector calibration for their effective use, it is possible that the method described here may be of use on other instruments where the detector calibration cannot be determined by other means.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>24904244</pmid><doi>10.1107/S1600576714006657</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1600-5767 |
ispartof | Journal of applied crystallography, 2014-06, Vol.47 (3), p.974-983 |
issn | 1600-5767 0021-8898 1600-5767 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4038798 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Calibration Crystallography Crystals Diffraction Diffractometers Mathematical analysis Mathematical models neutron diffraction neutron instruments Pixels Reflection Research Papers Scientific apparatus & instruments Single crystals time-of-flight |
title | An improved method for calibrating time-of-flight Laue single-crystal neutron diffractometers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A27%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20method%20for%20calibrating%20time-of-flight%20Laue%20single-crystal%20neutron%20diffractometers&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Bull,%20Craig%20L.&rft.date=2014-06&rft.volume=47&rft.issue=3&rft.spage=974&rft.epage=983&rft.pages=974-983&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576714006657&rft_dat=%3Cproquest_pubme%3E1826594107%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6149-4938ecbdda937c4d664afda2a232ee68873655da0495e0aeed1e4c5fa8f020f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1530888030&rft_id=info:pmid/24904244&rfr_iscdi=true |