Loading…

Antimicrobial and Antiinsectan Phenolic Metabolites of Dalea searlsiae

Continued interest in the chemistry of Dalea spp. led to investigation of Dalea searlsiae, a plant native to areas of the western United States. Methanol extractions of D. searlsiae roots and subsequent chromatographic fractionation afforded the new prenylated and geranylated flavanones malheurans A...

Full description

Saved in:
Bibliographic Details
Published in:Journal of natural products (Washington, D.C.) D.C.), 2014-05, Vol.77 (5), p.1140-1149
Main Authors: Belofsky, Gil, Aronica, Mario, Foss, Eric, Diamond, Jane, Santana, Felipe, Darley, Jacob, Dowd, Patrick F, Coleman, Christina M, Ferreira, Daneel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Continued interest in the chemistry of Dalea spp. led to investigation of Dalea searlsiae, a plant native to areas of the western United States. Methanol extractions of D. searlsiae roots and subsequent chromatographic fractionation afforded the new prenylated and geranylated flavanones malheurans A–D (1–4) and known flavanones (5 and 6). Known rotenoids (7 and 8) and isoflavones (9 and 10) were isolated from aerial portions. Structure determination of pure compounds was accomplished primarily by extensive 1D- and 2D-NMR spectroscopy. The absolute configurations of compounds 1–5, 7, and 8 were assigned using electronic circular dichroism spectroscopy. Antimicrobial bioassays revealed significant activity concentrated in the plant roots. Compounds 1–6 exhibited MICs of 2–8 μg/mL against Streptococcus mutans, Bacillus cereus, and oxacillin-sensitive and -resistant Staphylococcus aureus. Aerial metabolites 7–10 were inactive against these organisms, but the presence of 7 and 8 prompted investigation of the antiinsectan activity of D. searlsiae metabolites toward the major crop pest Spodoptera frugiperda (fall armyworm). While compounds 1–10 all caused significant reductions in larval growth rates, associated mortality (33–66%) was highest with flavanone 4 and rotenoids 7 and 8. These findings suggest a differential allocation of antimicrobial and antiinsectan plant resources to root and aerial portions of the plant, respectively.
ISSN:0163-3864
1520-6025
DOI:10.1021/np401083g