Loading…
Phylogenetic Analysis of the NEEP21/Calcyon/P19 Family of Endocytic Proteins: Evidence for Functional Evolution in the Vertebrate CNS
Endocytosis and vesicle trafficking are required for optimal neural transmission. Yet, little is currently known about the evolution of neuronal proteins regulating these processes. Here, we report the first phylogenetic study of NEEP21, calcyon, and P19, a family of neuronal proteins implicated in...
Saved in:
Published in: | Journal of molecular evolution 2009-10, Vol.69 (4), p.319-332 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c590t-34ffb00d6c803b7eab4ee91aeb83f56a0da6bd74bc081a0f07e1b287b73a33523 |
---|---|
cites | cdi_FETCH-LOGICAL-c590t-34ffb00d6c803b7eab4ee91aeb83f56a0da6bd74bc081a0f07e1b287b73a33523 |
container_end_page | 332 |
container_issue | 4 |
container_start_page | 319 |
container_title | Journal of molecular evolution |
container_volume | 69 |
creator | Muthusamy, Nagendran Ahmed, Sanaa A Rana, Brinda K Navarre, Sammy Kozlowski, David J Liberles, David A Bergson, Clare |
description | Endocytosis and vesicle trafficking are required for optimal neural transmission. Yet, little is currently known about the evolution of neuronal proteins regulating these processes. Here, we report the first phylogenetic study of NEEP21, calcyon, and P19, a family of neuronal proteins implicated in synaptic receptor endocytosis and recycling, as well as in membrane protein trafficking in the somatodendritic and axonal compartments of differentiated neurons. Database searches identified orthologs for P19 and NEEP21 in bony fish, but not urochordate or invertebrate phyla. Calcyon orthologs were only retrieved from mammalian databases and distant relatives from teleost fish. In situ localization of the P19 zebrafish ortholog, and extant progenitor of the gene family, revealed a CNS specific expression pattern. Based on non-synonymous nucleotide substitution rates, the calcyon genes appear to be under less intense negative selective pressure. Indeed, a functional group II WW domain binding motif was detected in primate and human calcyon, but not in non-primate orthologs. Sequencing of the calcyon gene from 80 human subjects revealed a non-synonymous single nucleotide polymorphism that abrogated group II WW domain protein binding. Altogether, our data indicate the NEEP21/calcyon/P19 gene family emerged, and underwent two rounds of gene duplication relatively late in metazoan evolution (but early in vertebrate evolution at the latest). As functional studies suggest NEEP21 and calcyon play related, but distinct roles in regulating vesicle trafficking at synapses, and in neurons in general, we propose the family arose in chordates to support a more diverse range of synaptic and behavioral responses. |
doi_str_mv | 10.1007/s00239-009-9273-y |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4041480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>856761257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-34ffb00d6c803b7eab4ee91aeb83f56a0da6bd74bc081a0f07e1b287b73a33523</originalsourceid><addsrcrecordid>eNp9Uc1u1DAQthCILgsPwAUiLpzCjn8SJxyQqtUuIFVlpVKuluNMdl1l7WInlfIAvHeTZgWFAxfbmu9nxvMR8prCBwogVxGA8TIFKNOSSZ4OT8iCCs7S6XhKFiPMUlYIcUZexHgDQGVW8ufkjJYyByHkgvzaHYbW79FhZ01y7nQ7RBsT3yTdAZPLzWbH6GqtWzN4t9rRMtnqo22HibBxtTfDJNsF36F18WOyubM1OoNJ40Oy7Z3prB89x7pv--mdWPfg_ANDh1XQHSbry6uX5Fmj24ivTveSXG8339df0otvn7-uzy9Sk5XQpVw0TQVQ56YAXknUlUAsqcaq4E2Wa6h1XtVSVAYKqqEBibRihawk15xnjC_Jp9n3tq-OWBt0XdCtug32qMOgvLbqb8TZg9r7OyVAUDE2XZL3J4Pgf_YYO3W00WDbaoe-j6rIcplTlsmR-e4f5o3vw7iLqKbtszwrpnnoTDLBxxiw-T0KBTVFrOaI1RixmiJWw6h58_gPfxSnTEcCmwlxhNwew6PO_3F9O4sa7ZXeBxvV9RUDyoHmZUlZzu8Bqvy8qg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197626582</pqid></control><display><type>article</type><title>Phylogenetic Analysis of the NEEP21/Calcyon/P19 Family of Endocytic Proteins: Evidence for Functional Evolution in the Vertebrate CNS</title><source>Springer Nature</source><creator>Muthusamy, Nagendran ; Ahmed, Sanaa A ; Rana, Brinda K ; Navarre, Sammy ; Kozlowski, David J ; Liberles, David A ; Bergson, Clare</creator><creatorcontrib>Muthusamy, Nagendran ; Ahmed, Sanaa A ; Rana, Brinda K ; Navarre, Sammy ; Kozlowski, David J ; Liberles, David A ; Bergson, Clare</creatorcontrib><description>Endocytosis and vesicle trafficking are required for optimal neural transmission. Yet, little is currently known about the evolution of neuronal proteins regulating these processes. Here, we report the first phylogenetic study of NEEP21, calcyon, and P19, a family of neuronal proteins implicated in synaptic receptor endocytosis and recycling, as well as in membrane protein trafficking in the somatodendritic and axonal compartments of differentiated neurons. Database searches identified orthologs for P19 and NEEP21 in bony fish, but not urochordate or invertebrate phyla. Calcyon orthologs were only retrieved from mammalian databases and distant relatives from teleost fish. In situ localization of the P19 zebrafish ortholog, and extant progenitor of the gene family, revealed a CNS specific expression pattern. Based on non-synonymous nucleotide substitution rates, the calcyon genes appear to be under less intense negative selective pressure. Indeed, a functional group II WW domain binding motif was detected in primate and human calcyon, but not in non-primate orthologs. Sequencing of the calcyon gene from 80 human subjects revealed a non-synonymous single nucleotide polymorphism that abrogated group II WW domain protein binding. Altogether, our data indicate the NEEP21/calcyon/P19 gene family emerged, and underwent two rounds of gene duplication relatively late in metazoan evolution (but early in vertebrate evolution at the latest). As functional studies suggest NEEP21 and calcyon play related, but distinct roles in regulating vesicle trafficking at synapses, and in neurons in general, we propose the family arose in chordates to support a more diverse range of synaptic and behavioral responses.</description><identifier>ISSN: 0022-2844</identifier><identifier>EISSN: 1432-1432</identifier><identifier>DOI: 10.1007/s00239-009-9273-y</identifier><identifier>PMID: 19760447</identifier><language>eng</language><publisher>New York: New York : Springer-Verlag</publisher><subject>Amino Acid Motifs ; Amino Acid Sequence ; Animal Genetics and Genomics ; Animals ; Biomedical and Life Sciences ; Cell Biology ; Central Nervous System - embryology ; Central Nervous System - metabolism ; Chordata ; Conserved Sequence ; Danio rerio ; Endocytosis ; Endocytosis - genetics ; Evolution, Molecular ; Evolutionary Biology ; Freshwater ; Gene Expression Regulation, Developmental ; Genomics ; Humans ; Invertebrates - genetics ; Life Sciences ; Membrane Proteins - chemistry ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Membranes ; Metazoa ; Microbiology ; Molecular biology ; Molecular Sequence Data ; Multigene Family - genetics ; Nerve Tissue Proteins - chemistry ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neurons ; Phylogeny ; Plant Genetics and Genomics ; Plant Sciences ; Polymorphism, Single Nucleotide - genetics ; Primates - genetics ; Protein Binding ; Proteins ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Sequence Alignment ; Species Specificity ; Teleostei ; Vertebrates ; Vertebrates - genetics ; Zebrafish - embryology ; Zebrafish - genetics</subject><ispartof>Journal of molecular evolution, 2009-10, Vol.69 (4), p.319-332</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-34ffb00d6c803b7eab4ee91aeb83f56a0da6bd74bc081a0f07e1b287b73a33523</citedby><cites>FETCH-LOGICAL-c590t-34ffb00d6c803b7eab4ee91aeb83f56a0da6bd74bc081a0f07e1b287b73a33523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19760447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muthusamy, Nagendran</creatorcontrib><creatorcontrib>Ahmed, Sanaa A</creatorcontrib><creatorcontrib>Rana, Brinda K</creatorcontrib><creatorcontrib>Navarre, Sammy</creatorcontrib><creatorcontrib>Kozlowski, David J</creatorcontrib><creatorcontrib>Liberles, David A</creatorcontrib><creatorcontrib>Bergson, Clare</creatorcontrib><title>Phylogenetic Analysis of the NEEP21/Calcyon/P19 Family of Endocytic Proteins: Evidence for Functional Evolution in the Vertebrate CNS</title><title>Journal of molecular evolution</title><addtitle>J Mol Evol</addtitle><addtitle>J Mol Evol</addtitle><description>Endocytosis and vesicle trafficking are required for optimal neural transmission. Yet, little is currently known about the evolution of neuronal proteins regulating these processes. Here, we report the first phylogenetic study of NEEP21, calcyon, and P19, a family of neuronal proteins implicated in synaptic receptor endocytosis and recycling, as well as in membrane protein trafficking in the somatodendritic and axonal compartments of differentiated neurons. Database searches identified orthologs for P19 and NEEP21 in bony fish, but not urochordate or invertebrate phyla. Calcyon orthologs were only retrieved from mammalian databases and distant relatives from teleost fish. In situ localization of the P19 zebrafish ortholog, and extant progenitor of the gene family, revealed a CNS specific expression pattern. Based on non-synonymous nucleotide substitution rates, the calcyon genes appear to be under less intense negative selective pressure. Indeed, a functional group II WW domain binding motif was detected in primate and human calcyon, but not in non-primate orthologs. Sequencing of the calcyon gene from 80 human subjects revealed a non-synonymous single nucleotide polymorphism that abrogated group II WW domain protein binding. Altogether, our data indicate the NEEP21/calcyon/P19 gene family emerged, and underwent two rounds of gene duplication relatively late in metazoan evolution (but early in vertebrate evolution at the latest). As functional studies suggest NEEP21 and calcyon play related, but distinct roles in regulating vesicle trafficking at synapses, and in neurons in general, we propose the family arose in chordates to support a more diverse range of synaptic and behavioral responses.</description><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Central Nervous System - embryology</subject><subject>Central Nervous System - metabolism</subject><subject>Chordata</subject><subject>Conserved Sequence</subject><subject>Danio rerio</subject><subject>Endocytosis</subject><subject>Endocytosis - genetics</subject><subject>Evolution, Molecular</subject><subject>Evolutionary Biology</subject><subject>Freshwater</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genomics</subject><subject>Humans</subject><subject>Invertebrates - genetics</subject><subject>Life Sciences</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>Metazoa</subject><subject>Microbiology</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Multigene Family - genetics</subject><subject>Nerve Tissue Proteins - chemistry</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurons</subject><subject>Phylogeny</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Sciences</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Primates - genetics</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Sequence Alignment</subject><subject>Species Specificity</subject><subject>Teleostei</subject><subject>Vertebrates</subject><subject>Vertebrates - genetics</subject><subject>Zebrafish - embryology</subject><subject>Zebrafish - genetics</subject><issn>0022-2844</issn><issn>1432-1432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9Uc1u1DAQthCILgsPwAUiLpzCjn8SJxyQqtUuIFVlpVKuluNMdl1l7WInlfIAvHeTZgWFAxfbmu9nxvMR8prCBwogVxGA8TIFKNOSSZ4OT8iCCs7S6XhKFiPMUlYIcUZexHgDQGVW8ufkjJYyByHkgvzaHYbW79FhZ01y7nQ7RBsT3yTdAZPLzWbH6GqtWzN4t9rRMtnqo22HibBxtTfDJNsF36F18WOyubM1OoNJ40Oy7Z3prB89x7pv--mdWPfg_ANDh1XQHSbry6uX5Fmj24ivTveSXG8339df0otvn7-uzy9Sk5XQpVw0TQVQ56YAXknUlUAsqcaq4E2Wa6h1XtVSVAYKqqEBibRihawk15xnjC_Jp9n3tq-OWBt0XdCtug32qMOgvLbqb8TZg9r7OyVAUDE2XZL3J4Pgf_YYO3W00WDbaoe-j6rIcplTlsmR-e4f5o3vw7iLqKbtszwrpnnoTDLBxxiw-T0KBTVFrOaI1RixmiJWw6h58_gPfxSnTEcCmwlxhNwew6PO_3F9O4sa7ZXeBxvV9RUDyoHmZUlZzu8Bqvy8qg</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Muthusamy, Nagendran</creator><creator>Ahmed, Sanaa A</creator><creator>Rana, Brinda K</creator><creator>Navarre, Sammy</creator><creator>Kozlowski, David J</creator><creator>Liberles, David A</creator><creator>Bergson, Clare</creator><general>New York : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20091001</creationdate><title>Phylogenetic Analysis of the NEEP21/Calcyon/P19 Family of Endocytic Proteins: Evidence for Functional Evolution in the Vertebrate CNS</title><author>Muthusamy, Nagendran ; Ahmed, Sanaa A ; Rana, Brinda K ; Navarre, Sammy ; Kozlowski, David J ; Liberles, David A ; Bergson, Clare</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-34ffb00d6c803b7eab4ee91aeb83f56a0da6bd74bc081a0f07e1b287b73a33523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Central Nervous System - embryology</topic><topic>Central Nervous System - metabolism</topic><topic>Chordata</topic><topic>Conserved Sequence</topic><topic>Danio rerio</topic><topic>Endocytosis</topic><topic>Endocytosis - genetics</topic><topic>Evolution, Molecular</topic><topic>Evolutionary Biology</topic><topic>Freshwater</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genomics</topic><topic>Humans</topic><topic>Invertebrates - genetics</topic><topic>Life Sciences</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>Metazoa</topic><topic>Microbiology</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Multigene Family - genetics</topic><topic>Nerve Tissue Proteins - chemistry</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurons</topic><topic>Phylogeny</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Sciences</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Primates - genetics</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Sequence Alignment</topic><topic>Species Specificity</topic><topic>Teleostei</topic><topic>Vertebrates</topic><topic>Vertebrates - genetics</topic><topic>Zebrafish - embryology</topic><topic>Zebrafish - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muthusamy, Nagendran</creatorcontrib><creatorcontrib>Ahmed, Sanaa A</creatorcontrib><creatorcontrib>Rana, Brinda K</creatorcontrib><creatorcontrib>Navarre, Sammy</creatorcontrib><creatorcontrib>Kozlowski, David J</creatorcontrib><creatorcontrib>Liberles, David A</creatorcontrib><creatorcontrib>Bergson, Clare</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muthusamy, Nagendran</au><au>Ahmed, Sanaa A</au><au>Rana, Brinda K</au><au>Navarre, Sammy</au><au>Kozlowski, David J</au><au>Liberles, David A</au><au>Bergson, Clare</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phylogenetic Analysis of the NEEP21/Calcyon/P19 Family of Endocytic Proteins: Evidence for Functional Evolution in the Vertebrate CNS</atitle><jtitle>Journal of molecular evolution</jtitle><stitle>J Mol Evol</stitle><addtitle>J Mol Evol</addtitle><date>2009-10-01</date><risdate>2009</risdate><volume>69</volume><issue>4</issue><spage>319</spage><epage>332</epage><pages>319-332</pages><issn>0022-2844</issn><eissn>1432-1432</eissn><abstract>Endocytosis and vesicle trafficking are required for optimal neural transmission. Yet, little is currently known about the evolution of neuronal proteins regulating these processes. Here, we report the first phylogenetic study of NEEP21, calcyon, and P19, a family of neuronal proteins implicated in synaptic receptor endocytosis and recycling, as well as in membrane protein trafficking in the somatodendritic and axonal compartments of differentiated neurons. Database searches identified orthologs for P19 and NEEP21 in bony fish, but not urochordate or invertebrate phyla. Calcyon orthologs were only retrieved from mammalian databases and distant relatives from teleost fish. In situ localization of the P19 zebrafish ortholog, and extant progenitor of the gene family, revealed a CNS specific expression pattern. Based on non-synonymous nucleotide substitution rates, the calcyon genes appear to be under less intense negative selective pressure. Indeed, a functional group II WW domain binding motif was detected in primate and human calcyon, but not in non-primate orthologs. Sequencing of the calcyon gene from 80 human subjects revealed a non-synonymous single nucleotide polymorphism that abrogated group II WW domain protein binding. Altogether, our data indicate the NEEP21/calcyon/P19 gene family emerged, and underwent two rounds of gene duplication relatively late in metazoan evolution (but early in vertebrate evolution at the latest). As functional studies suggest NEEP21 and calcyon play related, but distinct roles in regulating vesicle trafficking at synapses, and in neurons in general, we propose the family arose in chordates to support a more diverse range of synaptic and behavioral responses.</abstract><cop>New York</cop><pub>New York : Springer-Verlag</pub><pmid>19760447</pmid><doi>10.1007/s00239-009-9273-y</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2844 |
ispartof | Journal of molecular evolution, 2009-10, Vol.69 (4), p.319-332 |
issn | 0022-2844 1432-1432 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4041480 |
source | Springer Nature |
subjects | Amino Acid Motifs Amino Acid Sequence Animal Genetics and Genomics Animals Biomedical and Life Sciences Cell Biology Central Nervous System - embryology Central Nervous System - metabolism Chordata Conserved Sequence Danio rerio Endocytosis Endocytosis - genetics Evolution, Molecular Evolutionary Biology Freshwater Gene Expression Regulation, Developmental Genomics Humans Invertebrates - genetics Life Sciences Membrane Proteins - chemistry Membrane Proteins - genetics Membrane Proteins - metabolism Membranes Metazoa Microbiology Molecular biology Molecular Sequence Data Multigene Family - genetics Nerve Tissue Proteins - chemistry Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Neurons Phylogeny Plant Genetics and Genomics Plant Sciences Polymorphism, Single Nucleotide - genetics Primates - genetics Protein Binding Proteins RNA, Messenger - genetics RNA, Messenger - metabolism Sequence Alignment Species Specificity Teleostei Vertebrates Vertebrates - genetics Zebrafish - embryology Zebrafish - genetics |
title | Phylogenetic Analysis of the NEEP21/Calcyon/P19 Family of Endocytic Proteins: Evidence for Functional Evolution in the Vertebrate CNS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A23%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phylogenetic%20Analysis%20of%20the%20NEEP21/Calcyon/P19%20Family%20of%20Endocytic%20Proteins:%20Evidence%20for%20Functional%20Evolution%20in%20the%20Vertebrate%20CNS&rft.jtitle=Journal%20of%20molecular%20evolution&rft.au=Muthusamy,%20Nagendran&rft.date=2009-10-01&rft.volume=69&rft.issue=4&rft.spage=319&rft.epage=332&rft.pages=319-332&rft.issn=0022-2844&rft.eissn=1432-1432&rft_id=info:doi/10.1007/s00239-009-9273-y&rft_dat=%3Cproquest_pubme%3E856761257%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c590t-34ffb00d6c803b7eab4ee91aeb83f56a0da6bd74bc081a0f07e1b287b73a33523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=197626582&rft_id=info:pmid/19760447&rfr_iscdi=true |