Loading…
Thermally controlled widening of droplet etched nanoholes
We describe a method to control the shape of nanoholes in GaAs (001) which combines the technique of local droplet etching using Ga droplets with long-time thermal annealing. The cone-like shape of inverted nanoholes formed by droplet etching is transformed during long-time annealing into widened ho...
Saved in:
Published in: | Nanoscale research letters 2014-06, Vol.9 (1), p.285-285, Article 285 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b521t-7c1278750b4e9fd1e4d8c1618237af45431a4f067677258e4534662bdb0da7503 |
---|---|
cites | cdi_FETCH-LOGICAL-b521t-7c1278750b4e9fd1e4d8c1618237af45431a4f067677258e4534662bdb0da7503 |
container_end_page | 285 |
container_issue | 1 |
container_start_page | 285 |
container_title | Nanoscale research letters |
container_volume | 9 |
creator | Heyn, Christian Schnüll, Sandra Jesson, David E Hansen, Wolfgang |
description | We describe a method to control the shape of nanoholes in GaAs (001) which combines the technique of local droplet etching using Ga droplets with long-time thermal annealing. The cone-like shape of inverted nanoholes formed by droplet etching is transformed during long-time annealing into widened holes with flat bottoms and reduced depth. This is qualitatively understood using a simplified model of mass transport incorporating surface diffusion and evaporation. The hole diameter can be thermally controlled by varying the annealing time or annealing temperature which provides a method for tuning template morphology for subsequent nanostructure nucleation. We also demonstrate the integration of the combined droplet/thermal etching process with heteroepitaxy by the thermal control of hole depth in AlGaAs layers. |
doi_str_mv | 10.1186/1556-276X-9-285 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4053582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1539462688</sourcerecordid><originalsourceid>FETCH-LOGICAL-b521t-7c1278750b4e9fd1e4d8c1618237af45431a4f067677258e4534662bdb0da7503</originalsourceid><addsrcrecordid>eNp1kUtrGzEUhUVpqB236-7CQDfdTCJp9NwE0pAXGLJJoDuhmbljT9BIjjRuyb-PjBOThHglofPp3MO5CP0k-JgQJU4I56KkUvwtdUkV_4Kmu5ev-a4rUkouqwk6TOkBYyaxFN_QhDLNlMZ0ivTdEuJgnXsqmuDHGJyDtvjft-B7vyhCV7QxrByMBYzNMkve-rAMDtJ3dNBZl-DHyzlD95cXd-fX5fz26ub8bF7WnJKxlA2hUkmOawa6awmwVjVEEEUraTvGWUUs67CQQkrKFTBeMSFo3da4tflbNUOnW9_Vuh6gbSCntM6sYj_Y-GSC7c17xfdLswj_DMO84nnMDP3ZGtR92GPwXmnCYDY1mk2NRptcbDb5_ZIihsc1pNEMfWrAOeshrFPmK80EFUpl9NcH9CGso88dGSI41ZwpLDJ1sqWaGFKK0O0CEWw2u_0kwtHbInb86zIzgLdAypJfQHwzeI_nMyuSrpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652954806</pqid></control><display><type>article</type><title>Thermally controlled widening of droplet etched nanoholes</title><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><source>PubMed Central</source><creator>Heyn, Christian ; Schnüll, Sandra ; Jesson, David E ; Hansen, Wolfgang</creator><creatorcontrib>Heyn, Christian ; Schnüll, Sandra ; Jesson, David E ; Hansen, Wolfgang</creatorcontrib><description>We describe a method to control the shape of nanoholes in GaAs (001) which combines the technique of local droplet etching using Ga droplets with long-time thermal annealing. The cone-like shape of inverted nanoholes formed by droplet etching is transformed during long-time annealing into widened holes with flat bottoms and reduced depth. This is qualitatively understood using a simplified model of mass transport incorporating surface diffusion and evaporation. The hole diameter can be thermally controlled by varying the annealing time or annealing temperature which provides a method for tuning template morphology for subsequent nanostructure nucleation. We also demonstrate the integration of the combined droplet/thermal etching process with heteroepitaxy by the thermal control of hole depth in AlGaAs layers.</description><identifier>ISSN: 1931-7573</identifier><identifier>ISSN: 1556-276X</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1186/1556-276X-9-285</identifier><identifier>PMID: 24948902</identifier><language>eng</language><publisher>New York: Springer New York</publisher><subject>Chemistry and Materials Science ; EMN Meeting ; Materials Science ; Molecular Medicine ; Nano Express ; Nanochemistry ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering</subject><ispartof>Nanoscale research letters, 2014-06, Vol.9 (1), p.285-285, Article 285</ispartof><rights>Heyn et al.; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproductionin any medium, provided the original work is properly credited.</rights><rights>The Author(s) 2014</rights><rights>Copyright © 2014 Heyn et al.; licensee Springer. 2014 Heyn et al.; licensee Springer.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b521t-7c1278750b4e9fd1e4d8c1618237af45431a4f067677258e4534662bdb0da7503</citedby><cites>FETCH-LOGICAL-b521t-7c1278750b4e9fd1e4d8c1618237af45431a4f067677258e4534662bdb0da7503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1652954806/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1652954806?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24948902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heyn, Christian</creatorcontrib><creatorcontrib>Schnüll, Sandra</creatorcontrib><creatorcontrib>Jesson, David E</creatorcontrib><creatorcontrib>Hansen, Wolfgang</creatorcontrib><title>Thermally controlled widening of droplet etched nanoholes</title><title>Nanoscale research letters</title><addtitle>Nanoscale Res Lett</addtitle><addtitle>Nanoscale Res Lett</addtitle><description>We describe a method to control the shape of nanoholes in GaAs (001) which combines the technique of local droplet etching using Ga droplets with long-time thermal annealing. The cone-like shape of inverted nanoholes formed by droplet etching is transformed during long-time annealing into widened holes with flat bottoms and reduced depth. This is qualitatively understood using a simplified model of mass transport incorporating surface diffusion and evaporation. The hole diameter can be thermally controlled by varying the annealing time or annealing temperature which provides a method for tuning template morphology for subsequent nanostructure nucleation. We also demonstrate the integration of the combined droplet/thermal etching process with heteroepitaxy by the thermal control of hole depth in AlGaAs layers.</description><subject>Chemistry and Materials Science</subject><subject>EMN Meeting</subject><subject>Materials Science</subject><subject>Molecular Medicine</subject><subject>Nano Express</subject><subject>Nanochemistry</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><issn>1931-7573</issn><issn>1556-276X</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kUtrGzEUhUVpqB236-7CQDfdTCJp9NwE0pAXGLJJoDuhmbljT9BIjjRuyb-PjBOThHglofPp3MO5CP0k-JgQJU4I56KkUvwtdUkV_4Kmu5ev-a4rUkouqwk6TOkBYyaxFN_QhDLNlMZ0ivTdEuJgnXsqmuDHGJyDtvjft-B7vyhCV7QxrByMBYzNMkve-rAMDtJ3dNBZl-DHyzlD95cXd-fX5fz26ub8bF7WnJKxlA2hUkmOawa6awmwVjVEEEUraTvGWUUs67CQQkrKFTBeMSFo3da4tflbNUOnW9_Vuh6gbSCntM6sYj_Y-GSC7c17xfdLswj_DMO84nnMDP3ZGtR92GPwXmnCYDY1mk2NRptcbDb5_ZIihsc1pNEMfWrAOeshrFPmK80EFUpl9NcH9CGso88dGSI41ZwpLDJ1sqWaGFKK0O0CEWw2u_0kwtHbInb86zIzgLdAypJfQHwzeI_nMyuSrpg</recordid><startdate>20140609</startdate><enddate>20140609</enddate><creator>Heyn, Christian</creator><creator>Schnüll, Sandra</creator><creator>Jesson, David E</creator><creator>Hansen, Wolfgang</creator><general>Springer New York</general><general>Springer Nature B.V</general><general>BioMed Central Ltd</general><general>Springer</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140609</creationdate><title>Thermally controlled widening of droplet etched nanoholes</title><author>Heyn, Christian ; Schnüll, Sandra ; Jesson, David E ; Hansen, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b521t-7c1278750b4e9fd1e4d8c1618237af45431a4f067677258e4534662bdb0da7503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemistry and Materials Science</topic><topic>EMN Meeting</topic><topic>Materials Science</topic><topic>Molecular Medicine</topic><topic>Nano Express</topic><topic>Nanochemistry</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heyn, Christian</creatorcontrib><creatorcontrib>Schnüll, Sandra</creatorcontrib><creatorcontrib>Jesson, David E</creatorcontrib><creatorcontrib>Hansen, Wolfgang</creatorcontrib><collection>Springer Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heyn, Christian</au><au>Schnüll, Sandra</au><au>Jesson, David E</au><au>Hansen, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermally controlled widening of droplet etched nanoholes</atitle><jtitle>Nanoscale research letters</jtitle><stitle>Nanoscale Res Lett</stitle><addtitle>Nanoscale Res Lett</addtitle><date>2014-06-09</date><risdate>2014</risdate><volume>9</volume><issue>1</issue><spage>285</spage><epage>285</epage><pages>285-285</pages><artnum>285</artnum><issn>1931-7573</issn><issn>1556-276X</issn><eissn>1556-276X</eissn><abstract>We describe a method to control the shape of nanoholes in GaAs (001) which combines the technique of local droplet etching using Ga droplets with long-time thermal annealing. The cone-like shape of inverted nanoholes formed by droplet etching is transformed during long-time annealing into widened holes with flat bottoms and reduced depth. This is qualitatively understood using a simplified model of mass transport incorporating surface diffusion and evaporation. The hole diameter can be thermally controlled by varying the annealing time or annealing temperature which provides a method for tuning template morphology for subsequent nanostructure nucleation. We also demonstrate the integration of the combined droplet/thermal etching process with heteroepitaxy by the thermal control of hole depth in AlGaAs layers.</abstract><cop>New York</cop><pub>Springer New York</pub><pmid>24948902</pmid><doi>10.1186/1556-276X-9-285</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-7573 |
ispartof | Nanoscale research letters, 2014-06, Vol.9 (1), p.285-285, Article 285 |
issn | 1931-7573 1556-276X 1556-276X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4053582 |
source | Publicly Available Content Database; IngentaConnect Journals; PubMed Central |
subjects | Chemistry and Materials Science EMN Meeting Materials Science Molecular Medicine Nano Express Nanochemistry Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering |
title | Thermally controlled widening of droplet etched nanoholes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermally%20controlled%20widening%20of%20droplet%20etched%20nanoholes&rft.jtitle=Nanoscale%20research%20letters&rft.au=Heyn,%20Christian&rft.date=2014-06-09&rft.volume=9&rft.issue=1&rft.spage=285&rft.epage=285&rft.pages=285-285&rft.artnum=285&rft.issn=1931-7573&rft.eissn=1556-276X&rft_id=info:doi/10.1186/1556-276X-9-285&rft_dat=%3Cproquest_pubme%3E1539462688%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b521t-7c1278750b4e9fd1e4d8c1618237af45431a4f067677258e4534662bdb0da7503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1652954806&rft_id=info:pmid/24948902&rfr_iscdi=true |