Loading…

Thermally controlled widening of droplet etched nanoholes

We describe a method to control the shape of nanoholes in GaAs (001) which combines the technique of local droplet etching using Ga droplets with long-time thermal annealing. The cone-like shape of inverted nanoholes formed by droplet etching is transformed during long-time annealing into widened ho...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale research letters 2014-06, Vol.9 (1), p.285-285, Article 285
Main Authors: Heyn, Christian, Schnüll, Sandra, Jesson, David E, Hansen, Wolfgang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b521t-7c1278750b4e9fd1e4d8c1618237af45431a4f067677258e4534662bdb0da7503
cites cdi_FETCH-LOGICAL-b521t-7c1278750b4e9fd1e4d8c1618237af45431a4f067677258e4534662bdb0da7503
container_end_page 285
container_issue 1
container_start_page 285
container_title Nanoscale research letters
container_volume 9
creator Heyn, Christian
Schnüll, Sandra
Jesson, David E
Hansen, Wolfgang
description We describe a method to control the shape of nanoholes in GaAs (001) which combines the technique of local droplet etching using Ga droplets with long-time thermal annealing. The cone-like shape of inverted nanoholes formed by droplet etching is transformed during long-time annealing into widened holes with flat bottoms and reduced depth. This is qualitatively understood using a simplified model of mass transport incorporating surface diffusion and evaporation. The hole diameter can be thermally controlled by varying the annealing time or annealing temperature which provides a method for tuning template morphology for subsequent nanostructure nucleation. We also demonstrate the integration of the combined droplet/thermal etching process with heteroepitaxy by the thermal control of hole depth in AlGaAs layers.
doi_str_mv 10.1186/1556-276X-9-285
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4053582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1539462688</sourcerecordid><originalsourceid>FETCH-LOGICAL-b521t-7c1278750b4e9fd1e4d8c1618237af45431a4f067677258e4534662bdb0da7503</originalsourceid><addsrcrecordid>eNp1kUtrGzEUhUVpqB236-7CQDfdTCJp9NwE0pAXGLJJoDuhmbljT9BIjjRuyb-PjBOThHglofPp3MO5CP0k-JgQJU4I56KkUvwtdUkV_4Kmu5ev-a4rUkouqwk6TOkBYyaxFN_QhDLNlMZ0ivTdEuJgnXsqmuDHGJyDtvjft-B7vyhCV7QxrByMBYzNMkve-rAMDtJ3dNBZl-DHyzlD95cXd-fX5fz26ub8bF7WnJKxlA2hUkmOawa6awmwVjVEEEUraTvGWUUs67CQQkrKFTBeMSFo3da4tflbNUOnW9_Vuh6gbSCntM6sYj_Y-GSC7c17xfdLswj_DMO84nnMDP3ZGtR92GPwXmnCYDY1mk2NRptcbDb5_ZIihsc1pNEMfWrAOeshrFPmK80EFUpl9NcH9CGso88dGSI41ZwpLDJ1sqWaGFKK0O0CEWw2u_0kwtHbInb86zIzgLdAypJfQHwzeI_nMyuSrpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652954806</pqid></control><display><type>article</type><title>Thermally controlled widening of droplet etched nanoholes</title><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><source>PubMed Central</source><creator>Heyn, Christian ; Schnüll, Sandra ; Jesson, David E ; Hansen, Wolfgang</creator><creatorcontrib>Heyn, Christian ; Schnüll, Sandra ; Jesson, David E ; Hansen, Wolfgang</creatorcontrib><description>We describe a method to control the shape of nanoholes in GaAs (001) which combines the technique of local droplet etching using Ga droplets with long-time thermal annealing. The cone-like shape of inverted nanoholes formed by droplet etching is transformed during long-time annealing into widened holes with flat bottoms and reduced depth. This is qualitatively understood using a simplified model of mass transport incorporating surface diffusion and evaporation. The hole diameter can be thermally controlled by varying the annealing time or annealing temperature which provides a method for tuning template morphology for subsequent nanostructure nucleation. We also demonstrate the integration of the combined droplet/thermal etching process with heteroepitaxy by the thermal control of hole depth in AlGaAs layers.</description><identifier>ISSN: 1931-7573</identifier><identifier>ISSN: 1556-276X</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1186/1556-276X-9-285</identifier><identifier>PMID: 24948902</identifier><language>eng</language><publisher>New York: Springer New York</publisher><subject>Chemistry and Materials Science ; EMN Meeting ; Materials Science ; Molecular Medicine ; Nano Express ; Nanochemistry ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering</subject><ispartof>Nanoscale research letters, 2014-06, Vol.9 (1), p.285-285, Article 285</ispartof><rights>Heyn et al.; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproductionin any medium, provided the original work is properly credited.</rights><rights>The Author(s) 2014</rights><rights>Copyright © 2014 Heyn et al.; licensee Springer. 2014 Heyn et al.; licensee Springer.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b521t-7c1278750b4e9fd1e4d8c1618237af45431a4f067677258e4534662bdb0da7503</citedby><cites>FETCH-LOGICAL-b521t-7c1278750b4e9fd1e4d8c1618237af45431a4f067677258e4534662bdb0da7503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1652954806/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1652954806?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24948902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heyn, Christian</creatorcontrib><creatorcontrib>Schnüll, Sandra</creatorcontrib><creatorcontrib>Jesson, David E</creatorcontrib><creatorcontrib>Hansen, Wolfgang</creatorcontrib><title>Thermally controlled widening of droplet etched nanoholes</title><title>Nanoscale research letters</title><addtitle>Nanoscale Res Lett</addtitle><addtitle>Nanoscale Res Lett</addtitle><description>We describe a method to control the shape of nanoholes in GaAs (001) which combines the technique of local droplet etching using Ga droplets with long-time thermal annealing. The cone-like shape of inverted nanoholes formed by droplet etching is transformed during long-time annealing into widened holes with flat bottoms and reduced depth. This is qualitatively understood using a simplified model of mass transport incorporating surface diffusion and evaporation. The hole diameter can be thermally controlled by varying the annealing time or annealing temperature which provides a method for tuning template morphology for subsequent nanostructure nucleation. We also demonstrate the integration of the combined droplet/thermal etching process with heteroepitaxy by the thermal control of hole depth in AlGaAs layers.</description><subject>Chemistry and Materials Science</subject><subject>EMN Meeting</subject><subject>Materials Science</subject><subject>Molecular Medicine</subject><subject>Nano Express</subject><subject>Nanochemistry</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><issn>1931-7573</issn><issn>1556-276X</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kUtrGzEUhUVpqB236-7CQDfdTCJp9NwE0pAXGLJJoDuhmbljT9BIjjRuyb-PjBOThHglofPp3MO5CP0k-JgQJU4I56KkUvwtdUkV_4Kmu5ev-a4rUkouqwk6TOkBYyaxFN_QhDLNlMZ0ivTdEuJgnXsqmuDHGJyDtvjft-B7vyhCV7QxrByMBYzNMkve-rAMDtJ3dNBZl-DHyzlD95cXd-fX5fz26ub8bF7WnJKxlA2hUkmOawa6awmwVjVEEEUraTvGWUUs67CQQkrKFTBeMSFo3da4tflbNUOnW9_Vuh6gbSCntM6sYj_Y-GSC7c17xfdLswj_DMO84nnMDP3ZGtR92GPwXmnCYDY1mk2NRptcbDb5_ZIihsc1pNEMfWrAOeshrFPmK80EFUpl9NcH9CGso88dGSI41ZwpLDJ1sqWaGFKK0O0CEWw2u_0kwtHbInb86zIzgLdAypJfQHwzeI_nMyuSrpg</recordid><startdate>20140609</startdate><enddate>20140609</enddate><creator>Heyn, Christian</creator><creator>Schnüll, Sandra</creator><creator>Jesson, David E</creator><creator>Hansen, Wolfgang</creator><general>Springer New York</general><general>Springer Nature B.V</general><general>BioMed Central Ltd</general><general>Springer</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140609</creationdate><title>Thermally controlled widening of droplet etched nanoholes</title><author>Heyn, Christian ; Schnüll, Sandra ; Jesson, David E ; Hansen, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b521t-7c1278750b4e9fd1e4d8c1618237af45431a4f067677258e4534662bdb0da7503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemistry and Materials Science</topic><topic>EMN Meeting</topic><topic>Materials Science</topic><topic>Molecular Medicine</topic><topic>Nano Express</topic><topic>Nanochemistry</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heyn, Christian</creatorcontrib><creatorcontrib>Schnüll, Sandra</creatorcontrib><creatorcontrib>Jesson, David E</creatorcontrib><creatorcontrib>Hansen, Wolfgang</creatorcontrib><collection>Springer Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heyn, Christian</au><au>Schnüll, Sandra</au><au>Jesson, David E</au><au>Hansen, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermally controlled widening of droplet etched nanoholes</atitle><jtitle>Nanoscale research letters</jtitle><stitle>Nanoscale Res Lett</stitle><addtitle>Nanoscale Res Lett</addtitle><date>2014-06-09</date><risdate>2014</risdate><volume>9</volume><issue>1</issue><spage>285</spage><epage>285</epage><pages>285-285</pages><artnum>285</artnum><issn>1931-7573</issn><issn>1556-276X</issn><eissn>1556-276X</eissn><abstract>We describe a method to control the shape of nanoholes in GaAs (001) which combines the technique of local droplet etching using Ga droplets with long-time thermal annealing. The cone-like shape of inverted nanoholes formed by droplet etching is transformed during long-time annealing into widened holes with flat bottoms and reduced depth. This is qualitatively understood using a simplified model of mass transport incorporating surface diffusion and evaporation. The hole diameter can be thermally controlled by varying the annealing time or annealing temperature which provides a method for tuning template morphology for subsequent nanostructure nucleation. We also demonstrate the integration of the combined droplet/thermal etching process with heteroepitaxy by the thermal control of hole depth in AlGaAs layers.</abstract><cop>New York</cop><pub>Springer New York</pub><pmid>24948902</pmid><doi>10.1186/1556-276X-9-285</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-7573
ispartof Nanoscale research letters, 2014-06, Vol.9 (1), p.285-285, Article 285
issn 1931-7573
1556-276X
1556-276X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4053582
source Publicly Available Content Database; IngentaConnect Journals; PubMed Central
subjects Chemistry and Materials Science
EMN Meeting
Materials Science
Molecular Medicine
Nano Express
Nanochemistry
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
title Thermally controlled widening of droplet etched nanoholes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermally%20controlled%20widening%20of%20droplet%20etched%20nanoholes&rft.jtitle=Nanoscale%20research%20letters&rft.au=Heyn,%20Christian&rft.date=2014-06-09&rft.volume=9&rft.issue=1&rft.spage=285&rft.epage=285&rft.pages=285-285&rft.artnum=285&rft.issn=1931-7573&rft.eissn=1556-276X&rft_id=info:doi/10.1186/1556-276X-9-285&rft_dat=%3Cproquest_pubme%3E1539462688%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b521t-7c1278750b4e9fd1e4d8c1618237af45431a4f067677258e4534662bdb0da7503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1652954806&rft_id=info:pmid/24948902&rfr_iscdi=true