Loading…

How populations differentiate despite gene flow: sexual and natural selection drive phenotypic divergence within a land fish, the Pacific leaping blenny

Divergence between populations in reproductively important features is often vital for speciation. Many studies attempt to identify the cause of population differentiation in phenotype through the study of a specific selection pressure. Holistic studies that consider the interaction of several contr...

Full description

Saved in:
Bibliographic Details
Published in:BMC evolutionary biology 2014-05, Vol.14 (1), p.97-97
Main Authors: Morgans, Courtney L, Cooke, Georgina M, Ord, Terry J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Divergence between populations in reproductively important features is often vital for speciation. Many studies attempt to identify the cause of population differentiation in phenotype through the study of a specific selection pressure. Holistic studies that consider the interaction of several contrasting forms of selection are more rare. Most studies also fail to consider the history of connectivity among populations and the potential for genetic drift or gene flow to facilitate or limit phenotypic divergence. We examined the interacting effects of natural selection, sexual selection and the history of connectivity on phenotypic differentiation among five populations of the Pacific leaping blenny (Alticus arnoldorum), a land fish endemic to the island of Guam. We found key differences among populations in two male ornaments--the size of a prominent head crest and conspicuousness of a coloured dorsal fin--that reflected a trade-off between the intensity of sexual selection (male biased sex ratios) and natural selection (exposure to predators). This differentiation in ornamentation has occurred despite evidence suggesting extensive gene flow among populations, which implies that the change in ornament expression has been recent (and potentially plastic). Our study provides an early snapshot of divergence in reproductively important features that, regardless of whether it reflects genetic or plastic changes in phenotype, could ultimately form a reproductive barrier among populations.
ISSN:1471-2148
1471-2148
DOI:10.1186/1471-2148-14-97