Loading…
The dual PI3K/mTOR inhibitor PKI-587 enhances sensitivity to cetuximab in EGFR-resistant human head and neck cancer models
Background: Cetuximab is the only targeted agent approved for the treatment of head and neck squamous cell carcinomas (HNSCC), but low response rates and disease progression are frequently reported. As the phosphoinositide 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) pathways have an...
Saved in:
Published in: | British journal of cancer 2014-06, Vol.110 (12), p.2887-2895 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background:
Cetuximab is the only targeted agent approved for the treatment of head and neck squamous cell carcinomas (HNSCC), but low response rates and disease progression are frequently reported. As the phosphoinositide 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) pathways have an important role in the pathogenesis of HNSCC, we investigated their involvement in cetuximab resistance.
Methods:
Different human squamous cancer cell lines sensitive or resistant to cetuximab were tested for the dual PI3K/mTOR inhibitor PF-05212384 (PKI-587), alone and in combination, both
in vitro
and
in vivo
.
Results:
Treatment with PKI-587 enhances sensitivity to cetuximab
in vitro
, even in the condition of epidermal growth factor receptor (EGFR) resistance. The combination of the two drugs inhibits cells survival, impairs the activation of signalling pathways and induces apoptosis. Interestingly, although significant inhibition of proliferation is observed in all cell lines treated with PKI-587 in combination with cetuximab, activation of apoptosis is evident in sensitive but not in resistant cell lines, in which autophagy is pre-eminent. In nude mice xenografted with resistant Kyse30 cells, the combined treatment significantly reduces tumour growth and prolongs mice survival.
Conclusions:
Phosphoinositide 3-kinase/mammalian target of rapamycin inhibition has an important role in the rescue of cetuximab resistance. Different mechanisms of cell death are induced by combined treatment depending on basal anti-EGFR responsiveness. |
---|---|
ISSN: | 0007-0920 1532-1827 |
DOI: | 10.1038/bjc.2014.241 |