Loading…
Altered amyloid precursor protein processing regulates glucose uptake and oxidation in cultured rodent myotubes
Aims/hypothesis Impaired glucose uptake in skeletal muscle is an important contributor to glucose intolerance in type 2 diabetes. The aspartate protease, beta-site APP-cleaving enzyme 1 (BACE1), a critical regulator of amyloid precursor protein (APP) processing, modulates in vivo glucose disposal an...
Saved in:
Published in: | Diabetologia 2014-08, Vol.57 (8), p.1684-1692 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c533t-7b40109be517a0440ef8f7b71559a2756d88d6d0e366e1cd94f5bf7a6ccaf0c43 |
---|---|
cites | cdi_FETCH-LOGICAL-c533t-7b40109be517a0440ef8f7b71559a2756d88d6d0e366e1cd94f5bf7a6ccaf0c43 |
container_end_page | 1692 |
container_issue | 8 |
container_start_page | 1684 |
container_title | Diabetologia |
container_volume | 57 |
creator | Hamilton, D. Lee Findlay, John A. Montagut, Gemma Meakin, Paul J. Bestow, Dawn Jalicy, Susan M. Ashford, Michael L. J. |
description | Aims/hypothesis
Impaired glucose uptake in skeletal muscle is an important contributor to glucose intolerance in type 2 diabetes. The aspartate protease, beta-site APP-cleaving enzyme 1 (BACE1), a critical regulator of amyloid precursor protein (APP) processing, modulates in vivo glucose disposal and insulin sensitivity in mice. Insulin-independent pathways to stimulate glucose uptake and GLUT4 translocation may offer alternative therapeutic avenues for the treatment of diabetes. We therefore addressed whether BACE1 activity, via APP processing, in skeletal muscle modifies glucose uptake and oxidation independently of insulin.
Methods
Skeletal muscle cell lines were used to investigate the effects of BACE1 and α-secretase inhibition and BACE1 and APP overexpression on glucose uptake, GLUT4 cell surface translocation, glucose oxidation and cellular respiration.
Results
In the absence of insulin, reduction of BACE1 activity increased glucose uptake and oxidation, GLUT4myc cell surface translocation, and basal rate of oxygen consumption. In contrast, overexpressing BACE1 in C
2
C
12
myotubes decreased glucose uptake, glucose oxidation and oxygen consumption rate. APP overexpression increased and α-secretase inhibition decreased glucose uptake in C
2
C
12
myotubes. The increase in glucose uptake elicited by BACE1 inhibition is dependent on phosphoinositide 3-kinase (PI3K) and mimicked by soluble APPα (sAPPα).
Conclusions/interpretation
Inhibition of muscle BACE1 activity increases insulin-independent, PI3K-dependent glucose uptake and cell surface translocation of GLUT4. As APP overexpression raises basal glucose uptake, and direct application of sAPPα increases PI3K–protein kinase B signalling and glucose uptake in myotubes, we suggest that α-secretase-dependent shedding of sAPPα regulates insulin-independent glucose uptake in skeletal muscle. |
doi_str_mv | 10.1007/s00125-014-3269-x |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4079947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3359830061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-7b40109be517a0440ef8f7b71559a2756d88d6d0e366e1cd94f5bf7a6ccaf0c43</originalsourceid><addsrcrecordid>eNp1kU2LFDEQhoMo7uzqD_AiDSLspbXSnXS6L8Ky-AULXhS8hXS6us2aScZ8yMy_N82M6yp4qkA99eategl5RuEVBRCvIwBteA2U1W3TDfX-AdlQ1jY1sKZ_SDZru6Z99_WMnMd4CwAtZ91jctawng1cwIb4K5sw4FSp7cF6M1W7gDqH6EN5-YTGrVVjjMYtVcAlW5UwVovN2kes8i6p71gpN1V-byaVjHdVGdLZprzqBj-hS9X24FMeMT4hj2ZlIz491Qvy5d3bz9cf6ptP7z9eX93UmrdtqsXIgMIwIqdCAWOAcz-LUVDOB9UI3k19P3UTYNt1SPU0sJmPs1Cd1moGzdoL8uaou8vjFiddPARl5S6YrQoH6ZWRf3ec-SYX_1MyEMPARBG4PAkE_yNjTHJrokZrlUOfo6S8HFoMvIeCvvgHvfU5uLLeSjWFoqwvFD1SOvgYA853ZijINU55jFOWOOUap9yXmef3t7ib-J1fAV6eABW1snNQTpv4h-s7yng7FK45crG03ILhnsX__v4Lcl-72A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1542279148</pqid></control><display><type>article</type><title>Altered amyloid precursor protein processing regulates glucose uptake and oxidation in cultured rodent myotubes</title><source>Springer Link</source><creator>Hamilton, D. Lee ; Findlay, John A. ; Montagut, Gemma ; Meakin, Paul J. ; Bestow, Dawn ; Jalicy, Susan M. ; Ashford, Michael L. J.</creator><creatorcontrib>Hamilton, D. Lee ; Findlay, John A. ; Montagut, Gemma ; Meakin, Paul J. ; Bestow, Dawn ; Jalicy, Susan M. ; Ashford, Michael L. J.</creatorcontrib><description>Aims/hypothesis
Impaired glucose uptake in skeletal muscle is an important contributor to glucose intolerance in type 2 diabetes. The aspartate protease, beta-site APP-cleaving enzyme 1 (BACE1), a critical regulator of amyloid precursor protein (APP) processing, modulates in vivo glucose disposal and insulin sensitivity in mice. Insulin-independent pathways to stimulate glucose uptake and GLUT4 translocation may offer alternative therapeutic avenues for the treatment of diabetes. We therefore addressed whether BACE1 activity, via APP processing, in skeletal muscle modifies glucose uptake and oxidation independently of insulin.
Methods
Skeletal muscle cell lines were used to investigate the effects of BACE1 and α-secretase inhibition and BACE1 and APP overexpression on glucose uptake, GLUT4 cell surface translocation, glucose oxidation and cellular respiration.
Results
In the absence of insulin, reduction of BACE1 activity increased glucose uptake and oxidation, GLUT4myc cell surface translocation, and basal rate of oxygen consumption. In contrast, overexpressing BACE1 in C
2
C
12
myotubes decreased glucose uptake, glucose oxidation and oxygen consumption rate. APP overexpression increased and α-secretase inhibition decreased glucose uptake in C
2
C
12
myotubes. The increase in glucose uptake elicited by BACE1 inhibition is dependent on phosphoinositide 3-kinase (PI3K) and mimicked by soluble APPα (sAPPα).
Conclusions/interpretation
Inhibition of muscle BACE1 activity increases insulin-independent, PI3K-dependent glucose uptake and cell surface translocation of GLUT4. As APP overexpression raises basal glucose uptake, and direct application of sAPPα increases PI3K–protein kinase B signalling and glucose uptake in myotubes, we suggest that α-secretase-dependent shedding of sAPPα regulates insulin-independent glucose uptake in skeletal muscle.</description><identifier>ISSN: 0012-186X</identifier><identifier>ISSN: 1432-0428</identifier><identifier>EISSN: 1432-0428</identifier><identifier>DOI: 10.1007/s00125-014-3269-x</identifier><identifier>PMID: 24849570</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alzheimer's disease ; Amyloid beta-Protein Precursor - genetics ; Amyloid beta-Protein Precursor - metabolism ; Amyloid Precursor Protein Secretases - genetics ; Amyloid Precursor Protein Secretases - metabolism ; Animals ; Aspartic Acid Endopeptidases - genetics ; Aspartic Acid Endopeptidases - metabolism ; Biological and medical sciences ; Cell Line ; Ceramides - pharmacology ; Diabetes ; Diabetes. Impaired glucose tolerance ; Endocrine pancreas. Apud cells (diseases) ; Endocrinopathies ; Enzymes ; Etiopathogenesis. Screening. Investigations. Target tissue resistance ; Fundamental and applied biological sciences. Psychology ; Glucose ; Glucose - metabolism ; Human Physiology ; Insulin resistance ; Internal Medicine ; Kinases ; Medical sciences ; Medicine ; Medicine & Public Health ; Metabolic Diseases ; Metabolism ; Muscle Fibers, Skeletal - drug effects ; Muscle Fibers, Skeletal - metabolism ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - metabolism ; Musculoskeletal system ; Oxidation ; Palmitic Acid - pharmacology ; Proteins ; Rats ; Striated muscle. Tendons ; Vertebrates: osteoarticular system, musculoskeletal system</subject><ispartof>Diabetologia, 2014-08, Vol.57 (8), p.1684-1692</ispartof><rights>The Author(s) 2014</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-7b40109be517a0440ef8f7b71559a2756d88d6d0e366e1cd94f5bf7a6ccaf0c43</citedby><cites>FETCH-LOGICAL-c533t-7b40109be517a0440ef8f7b71559a2756d88d6d0e366e1cd94f5bf7a6ccaf0c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28614539$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24849570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamilton, D. Lee</creatorcontrib><creatorcontrib>Findlay, John A.</creatorcontrib><creatorcontrib>Montagut, Gemma</creatorcontrib><creatorcontrib>Meakin, Paul J.</creatorcontrib><creatorcontrib>Bestow, Dawn</creatorcontrib><creatorcontrib>Jalicy, Susan M.</creatorcontrib><creatorcontrib>Ashford, Michael L. J.</creatorcontrib><title>Altered amyloid precursor protein processing regulates glucose uptake and oxidation in cultured rodent myotubes</title><title>Diabetologia</title><addtitle>Diabetologia</addtitle><addtitle>Diabetologia</addtitle><description>Aims/hypothesis
Impaired glucose uptake in skeletal muscle is an important contributor to glucose intolerance in type 2 diabetes. The aspartate protease, beta-site APP-cleaving enzyme 1 (BACE1), a critical regulator of amyloid precursor protein (APP) processing, modulates in vivo glucose disposal and insulin sensitivity in mice. Insulin-independent pathways to stimulate glucose uptake and GLUT4 translocation may offer alternative therapeutic avenues for the treatment of diabetes. We therefore addressed whether BACE1 activity, via APP processing, in skeletal muscle modifies glucose uptake and oxidation independently of insulin.
Methods
Skeletal muscle cell lines were used to investigate the effects of BACE1 and α-secretase inhibition and BACE1 and APP overexpression on glucose uptake, GLUT4 cell surface translocation, glucose oxidation and cellular respiration.
Results
In the absence of insulin, reduction of BACE1 activity increased glucose uptake and oxidation, GLUT4myc cell surface translocation, and basal rate of oxygen consumption. In contrast, overexpressing BACE1 in C
2
C
12
myotubes decreased glucose uptake, glucose oxidation and oxygen consumption rate. APP overexpression increased and α-secretase inhibition decreased glucose uptake in C
2
C
12
myotubes. The increase in glucose uptake elicited by BACE1 inhibition is dependent on phosphoinositide 3-kinase (PI3K) and mimicked by soluble APPα (sAPPα).
Conclusions/interpretation
Inhibition of muscle BACE1 activity increases insulin-independent, PI3K-dependent glucose uptake and cell surface translocation of GLUT4. As APP overexpression raises basal glucose uptake, and direct application of sAPPα increases PI3K–protein kinase B signalling and glucose uptake in myotubes, we suggest that α-secretase-dependent shedding of sAPPα regulates insulin-independent glucose uptake in skeletal muscle.</description><subject>Alzheimer's disease</subject><subject>Amyloid beta-Protein Precursor - genetics</subject><subject>Amyloid beta-Protein Precursor - metabolism</subject><subject>Amyloid Precursor Protein Secretases - genetics</subject><subject>Amyloid Precursor Protein Secretases - metabolism</subject><subject>Animals</subject><subject>Aspartic Acid Endopeptidases - genetics</subject><subject>Aspartic Acid Endopeptidases - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cell Line</subject><subject>Ceramides - pharmacology</subject><subject>Diabetes</subject><subject>Diabetes. Impaired glucose tolerance</subject><subject>Endocrine pancreas. Apud cells (diseases)</subject><subject>Endocrinopathies</subject><subject>Enzymes</subject><subject>Etiopathogenesis. Screening. Investigations. Target tissue resistance</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Human Physiology</subject><subject>Insulin resistance</subject><subject>Internal Medicine</subject><subject>Kinases</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metabolic Diseases</subject><subject>Metabolism</subject><subject>Muscle Fibers, Skeletal - drug effects</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Musculoskeletal system</subject><subject>Oxidation</subject><subject>Palmitic Acid - pharmacology</subject><subject>Proteins</subject><subject>Rats</subject><subject>Striated muscle. Tendons</subject><subject>Vertebrates: osteoarticular system, musculoskeletal system</subject><issn>0012-186X</issn><issn>1432-0428</issn><issn>1432-0428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kU2LFDEQhoMo7uzqD_AiDSLspbXSnXS6L8Ky-AULXhS8hXS6us2aScZ8yMy_N82M6yp4qkA99eategl5RuEVBRCvIwBteA2U1W3TDfX-AdlQ1jY1sKZ_SDZru6Z99_WMnMd4CwAtZ91jctawng1cwIb4K5sw4FSp7cF6M1W7gDqH6EN5-YTGrVVjjMYtVcAlW5UwVovN2kes8i6p71gpN1V-byaVjHdVGdLZprzqBj-hS9X24FMeMT4hj2ZlIz491Qvy5d3bz9cf6ptP7z9eX93UmrdtqsXIgMIwIqdCAWOAcz-LUVDOB9UI3k19P3UTYNt1SPU0sJmPs1Cd1moGzdoL8uaou8vjFiddPARl5S6YrQoH6ZWRf3ec-SYX_1MyEMPARBG4PAkE_yNjTHJrokZrlUOfo6S8HFoMvIeCvvgHvfU5uLLeSjWFoqwvFD1SOvgYA853ZijINU55jFOWOOUap9yXmef3t7ib-J1fAV6eABW1snNQTpv4h-s7yng7FK45crG03ILhnsX__v4Lcl-72A</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Hamilton, D. Lee</creator><creator>Findlay, John A.</creator><creator>Montagut, Gemma</creator><creator>Meakin, Paul J.</creator><creator>Bestow, Dawn</creator><creator>Jalicy, Susan M.</creator><creator>Ashford, Michael L. J.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140801</creationdate><title>Altered amyloid precursor protein processing regulates glucose uptake and oxidation in cultured rodent myotubes</title><author>Hamilton, D. Lee ; Findlay, John A. ; Montagut, Gemma ; Meakin, Paul J. ; Bestow, Dawn ; Jalicy, Susan M. ; Ashford, Michael L. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-7b40109be517a0440ef8f7b71559a2756d88d6d0e366e1cd94f5bf7a6ccaf0c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alzheimer's disease</topic><topic>Amyloid beta-Protein Precursor - genetics</topic><topic>Amyloid beta-Protein Precursor - metabolism</topic><topic>Amyloid Precursor Protein Secretases - genetics</topic><topic>Amyloid Precursor Protein Secretases - metabolism</topic><topic>Animals</topic><topic>Aspartic Acid Endopeptidases - genetics</topic><topic>Aspartic Acid Endopeptidases - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cell Line</topic><topic>Ceramides - pharmacology</topic><topic>Diabetes</topic><topic>Diabetes. Impaired glucose tolerance</topic><topic>Endocrine pancreas. Apud cells (diseases)</topic><topic>Endocrinopathies</topic><topic>Enzymes</topic><topic>Etiopathogenesis. Screening. Investigations. Target tissue resistance</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Human Physiology</topic><topic>Insulin resistance</topic><topic>Internal Medicine</topic><topic>Kinases</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metabolic Diseases</topic><topic>Metabolism</topic><topic>Muscle Fibers, Skeletal - drug effects</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Musculoskeletal system</topic><topic>Oxidation</topic><topic>Palmitic Acid - pharmacology</topic><topic>Proteins</topic><topic>Rats</topic><topic>Striated muscle. Tendons</topic><topic>Vertebrates: osteoarticular system, musculoskeletal system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamilton, D. Lee</creatorcontrib><creatorcontrib>Findlay, John A.</creatorcontrib><creatorcontrib>Montagut, Gemma</creatorcontrib><creatorcontrib>Meakin, Paul J.</creatorcontrib><creatorcontrib>Bestow, Dawn</creatorcontrib><creatorcontrib>Jalicy, Susan M.</creatorcontrib><creatorcontrib>Ashford, Michael L. J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamilton, D. Lee</au><au>Findlay, John A.</au><au>Montagut, Gemma</au><au>Meakin, Paul J.</au><au>Bestow, Dawn</au><au>Jalicy, Susan M.</au><au>Ashford, Michael L. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Altered amyloid precursor protein processing regulates glucose uptake and oxidation in cultured rodent myotubes</atitle><jtitle>Diabetologia</jtitle><stitle>Diabetologia</stitle><addtitle>Diabetologia</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>57</volume><issue>8</issue><spage>1684</spage><epage>1692</epage><pages>1684-1692</pages><issn>0012-186X</issn><issn>1432-0428</issn><eissn>1432-0428</eissn><abstract>Aims/hypothesis
Impaired glucose uptake in skeletal muscle is an important contributor to glucose intolerance in type 2 diabetes. The aspartate protease, beta-site APP-cleaving enzyme 1 (BACE1), a critical regulator of amyloid precursor protein (APP) processing, modulates in vivo glucose disposal and insulin sensitivity in mice. Insulin-independent pathways to stimulate glucose uptake and GLUT4 translocation may offer alternative therapeutic avenues for the treatment of diabetes. We therefore addressed whether BACE1 activity, via APP processing, in skeletal muscle modifies glucose uptake and oxidation independently of insulin.
Methods
Skeletal muscle cell lines were used to investigate the effects of BACE1 and α-secretase inhibition and BACE1 and APP overexpression on glucose uptake, GLUT4 cell surface translocation, glucose oxidation and cellular respiration.
Results
In the absence of insulin, reduction of BACE1 activity increased glucose uptake and oxidation, GLUT4myc cell surface translocation, and basal rate of oxygen consumption. In contrast, overexpressing BACE1 in C
2
C
12
myotubes decreased glucose uptake, glucose oxidation and oxygen consumption rate. APP overexpression increased and α-secretase inhibition decreased glucose uptake in C
2
C
12
myotubes. The increase in glucose uptake elicited by BACE1 inhibition is dependent on phosphoinositide 3-kinase (PI3K) and mimicked by soluble APPα (sAPPα).
Conclusions/interpretation
Inhibition of muscle BACE1 activity increases insulin-independent, PI3K-dependent glucose uptake and cell surface translocation of GLUT4. As APP overexpression raises basal glucose uptake, and direct application of sAPPα increases PI3K–protein kinase B signalling and glucose uptake in myotubes, we suggest that α-secretase-dependent shedding of sAPPα regulates insulin-independent glucose uptake in skeletal muscle.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>24849570</pmid><doi>10.1007/s00125-014-3269-x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-186X |
ispartof | Diabetologia, 2014-08, Vol.57 (8), p.1684-1692 |
issn | 0012-186X 1432-0428 1432-0428 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4079947 |
source | Springer Link |
subjects | Alzheimer's disease Amyloid beta-Protein Precursor - genetics Amyloid beta-Protein Precursor - metabolism Amyloid Precursor Protein Secretases - genetics Amyloid Precursor Protein Secretases - metabolism Animals Aspartic Acid Endopeptidases - genetics Aspartic Acid Endopeptidases - metabolism Biological and medical sciences Cell Line Ceramides - pharmacology Diabetes Diabetes. Impaired glucose tolerance Endocrine pancreas. Apud cells (diseases) Endocrinopathies Enzymes Etiopathogenesis. Screening. Investigations. Target tissue resistance Fundamental and applied biological sciences. Psychology Glucose Glucose - metabolism Human Physiology Insulin resistance Internal Medicine Kinases Medical sciences Medicine Medicine & Public Health Metabolic Diseases Metabolism Muscle Fibers, Skeletal - drug effects Muscle Fibers, Skeletal - metabolism Muscle, Skeletal - drug effects Muscle, Skeletal - metabolism Musculoskeletal system Oxidation Palmitic Acid - pharmacology Proteins Rats Striated muscle. Tendons Vertebrates: osteoarticular system, musculoskeletal system |
title | Altered amyloid precursor protein processing regulates glucose uptake and oxidation in cultured rodent myotubes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Altered%20amyloid%20precursor%20protein%20processing%20regulates%20glucose%20uptake%20and%20oxidation%20in%20cultured%20rodent%20myotubes&rft.jtitle=Diabetologia&rft.au=Hamilton,%20D.%20Lee&rft.date=2014-08-01&rft.volume=57&rft.issue=8&rft.spage=1684&rft.epage=1692&rft.pages=1684-1692&rft.issn=0012-186X&rft.eissn=1432-0428&rft_id=info:doi/10.1007/s00125-014-3269-x&rft_dat=%3Cproquest_pubme%3E3359830061%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c533t-7b40109be517a0440ef8f7b71559a2756d88d6d0e366e1cd94f5bf7a6ccaf0c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1542279148&rft_id=info:pmid/24849570&rfr_iscdi=true |