Loading…

Altered amyloid precursor protein processing regulates glucose uptake and oxidation in cultured rodent myotubes

Aims/hypothesis Impaired glucose uptake in skeletal muscle is an important contributor to glucose intolerance in type 2 diabetes. The aspartate protease, beta-site APP-cleaving enzyme 1 (BACE1), a critical regulator of amyloid precursor protein (APP) processing, modulates in vivo glucose disposal an...

Full description

Saved in:
Bibliographic Details
Published in:Diabetologia 2014-08, Vol.57 (8), p.1684-1692
Main Authors: Hamilton, D. Lee, Findlay, John A., Montagut, Gemma, Meakin, Paul J., Bestow, Dawn, Jalicy, Susan M., Ashford, Michael L. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c533t-7b40109be517a0440ef8f7b71559a2756d88d6d0e366e1cd94f5bf7a6ccaf0c43
cites cdi_FETCH-LOGICAL-c533t-7b40109be517a0440ef8f7b71559a2756d88d6d0e366e1cd94f5bf7a6ccaf0c43
container_end_page 1692
container_issue 8
container_start_page 1684
container_title Diabetologia
container_volume 57
creator Hamilton, D. Lee
Findlay, John A.
Montagut, Gemma
Meakin, Paul J.
Bestow, Dawn
Jalicy, Susan M.
Ashford, Michael L. J.
description Aims/hypothesis Impaired glucose uptake in skeletal muscle is an important contributor to glucose intolerance in type 2 diabetes. The aspartate protease, beta-site APP-cleaving enzyme 1 (BACE1), a critical regulator of amyloid precursor protein (APP) processing, modulates in vivo glucose disposal and insulin sensitivity in mice. Insulin-independent pathways to stimulate glucose uptake and GLUT4 translocation may offer alternative therapeutic avenues for the treatment of diabetes. We therefore addressed whether BACE1 activity, via APP processing, in skeletal muscle modifies glucose uptake and oxidation independently of insulin. Methods Skeletal muscle cell lines were used to investigate the effects of BACE1 and α-secretase inhibition and BACE1 and APP overexpression on glucose uptake, GLUT4 cell surface translocation, glucose oxidation and cellular respiration. Results In the absence of insulin, reduction of BACE1 activity increased glucose uptake and oxidation, GLUT4myc cell surface translocation, and basal rate of oxygen consumption. In contrast, overexpressing BACE1 in C 2 C 12 myotubes decreased glucose uptake, glucose oxidation and oxygen consumption rate. APP overexpression increased and α-secretase inhibition decreased glucose uptake in C 2 C 12 myotubes. The increase in glucose uptake elicited by BACE1 inhibition is dependent on phosphoinositide 3-kinase (PI3K) and mimicked by soluble APPα (sAPPα). Conclusions/interpretation Inhibition of muscle BACE1 activity increases insulin-independent, PI3K-dependent glucose uptake and cell surface translocation of GLUT4. As APP overexpression raises basal glucose uptake, and direct application of sAPPα increases PI3K–protein kinase B signalling and glucose uptake in myotubes, we suggest that α-secretase-dependent shedding of sAPPα regulates insulin-independent glucose uptake in skeletal muscle.
doi_str_mv 10.1007/s00125-014-3269-x
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4079947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3359830061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-7b40109be517a0440ef8f7b71559a2756d88d6d0e366e1cd94f5bf7a6ccaf0c43</originalsourceid><addsrcrecordid>eNp1kU2LFDEQhoMo7uzqD_AiDSLspbXSnXS6L8Ky-AULXhS8hXS6us2aScZ8yMy_N82M6yp4qkA99eategl5RuEVBRCvIwBteA2U1W3TDfX-AdlQ1jY1sKZ_SDZru6Z99_WMnMd4CwAtZ91jctawng1cwIb4K5sw4FSp7cF6M1W7gDqH6EN5-YTGrVVjjMYtVcAlW5UwVovN2kes8i6p71gpN1V-byaVjHdVGdLZprzqBj-hS9X24FMeMT4hj2ZlIz491Qvy5d3bz9cf6ptP7z9eX93UmrdtqsXIgMIwIqdCAWOAcz-LUVDOB9UI3k19P3UTYNt1SPU0sJmPs1Cd1moGzdoL8uaou8vjFiddPARl5S6YrQoH6ZWRf3ec-SYX_1MyEMPARBG4PAkE_yNjTHJrokZrlUOfo6S8HFoMvIeCvvgHvfU5uLLeSjWFoqwvFD1SOvgYA853ZijINU55jFOWOOUap9yXmef3t7ib-J1fAV6eABW1snNQTpv4h-s7yng7FK45crG03ILhnsX__v4Lcl-72A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1542279148</pqid></control><display><type>article</type><title>Altered amyloid precursor protein processing regulates glucose uptake and oxidation in cultured rodent myotubes</title><source>Springer Link</source><creator>Hamilton, D. Lee ; Findlay, John A. ; Montagut, Gemma ; Meakin, Paul J. ; Bestow, Dawn ; Jalicy, Susan M. ; Ashford, Michael L. J.</creator><creatorcontrib>Hamilton, D. Lee ; Findlay, John A. ; Montagut, Gemma ; Meakin, Paul J. ; Bestow, Dawn ; Jalicy, Susan M. ; Ashford, Michael L. J.</creatorcontrib><description>Aims/hypothesis Impaired glucose uptake in skeletal muscle is an important contributor to glucose intolerance in type 2 diabetes. The aspartate protease, beta-site APP-cleaving enzyme 1 (BACE1), a critical regulator of amyloid precursor protein (APP) processing, modulates in vivo glucose disposal and insulin sensitivity in mice. Insulin-independent pathways to stimulate glucose uptake and GLUT4 translocation may offer alternative therapeutic avenues for the treatment of diabetes. We therefore addressed whether BACE1 activity, via APP processing, in skeletal muscle modifies glucose uptake and oxidation independently of insulin. Methods Skeletal muscle cell lines were used to investigate the effects of BACE1 and α-secretase inhibition and BACE1 and APP overexpression on glucose uptake, GLUT4 cell surface translocation, glucose oxidation and cellular respiration. Results In the absence of insulin, reduction of BACE1 activity increased glucose uptake and oxidation, GLUT4myc cell surface translocation, and basal rate of oxygen consumption. In contrast, overexpressing BACE1 in C 2 C 12 myotubes decreased glucose uptake, glucose oxidation and oxygen consumption rate. APP overexpression increased and α-secretase inhibition decreased glucose uptake in C 2 C 12 myotubes. The increase in glucose uptake elicited by BACE1 inhibition is dependent on phosphoinositide 3-kinase (PI3K) and mimicked by soluble APPα (sAPPα). Conclusions/interpretation Inhibition of muscle BACE1 activity increases insulin-independent, PI3K-dependent glucose uptake and cell surface translocation of GLUT4. As APP overexpression raises basal glucose uptake, and direct application of sAPPα increases PI3K–protein kinase B signalling and glucose uptake in myotubes, we suggest that α-secretase-dependent shedding of sAPPα regulates insulin-independent glucose uptake in skeletal muscle.</description><identifier>ISSN: 0012-186X</identifier><identifier>ISSN: 1432-0428</identifier><identifier>EISSN: 1432-0428</identifier><identifier>DOI: 10.1007/s00125-014-3269-x</identifier><identifier>PMID: 24849570</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alzheimer's disease ; Amyloid beta-Protein Precursor - genetics ; Amyloid beta-Protein Precursor - metabolism ; Amyloid Precursor Protein Secretases - genetics ; Amyloid Precursor Protein Secretases - metabolism ; Animals ; Aspartic Acid Endopeptidases - genetics ; Aspartic Acid Endopeptidases - metabolism ; Biological and medical sciences ; Cell Line ; Ceramides - pharmacology ; Diabetes ; Diabetes. Impaired glucose tolerance ; Endocrine pancreas. Apud cells (diseases) ; Endocrinopathies ; Enzymes ; Etiopathogenesis. Screening. Investigations. Target tissue resistance ; Fundamental and applied biological sciences. Psychology ; Glucose ; Glucose - metabolism ; Human Physiology ; Insulin resistance ; Internal Medicine ; Kinases ; Medical sciences ; Medicine ; Medicine &amp; Public Health ; Metabolic Diseases ; Metabolism ; Muscle Fibers, Skeletal - drug effects ; Muscle Fibers, Skeletal - metabolism ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - metabolism ; Musculoskeletal system ; Oxidation ; Palmitic Acid - pharmacology ; Proteins ; Rats ; Striated muscle. Tendons ; Vertebrates: osteoarticular system, musculoskeletal system</subject><ispartof>Diabetologia, 2014-08, Vol.57 (8), p.1684-1692</ispartof><rights>The Author(s) 2014</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-7b40109be517a0440ef8f7b71559a2756d88d6d0e366e1cd94f5bf7a6ccaf0c43</citedby><cites>FETCH-LOGICAL-c533t-7b40109be517a0440ef8f7b71559a2756d88d6d0e366e1cd94f5bf7a6ccaf0c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28614539$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24849570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamilton, D. Lee</creatorcontrib><creatorcontrib>Findlay, John A.</creatorcontrib><creatorcontrib>Montagut, Gemma</creatorcontrib><creatorcontrib>Meakin, Paul J.</creatorcontrib><creatorcontrib>Bestow, Dawn</creatorcontrib><creatorcontrib>Jalicy, Susan M.</creatorcontrib><creatorcontrib>Ashford, Michael L. J.</creatorcontrib><title>Altered amyloid precursor protein processing regulates glucose uptake and oxidation in cultured rodent myotubes</title><title>Diabetologia</title><addtitle>Diabetologia</addtitle><addtitle>Diabetologia</addtitle><description>Aims/hypothesis Impaired glucose uptake in skeletal muscle is an important contributor to glucose intolerance in type 2 diabetes. The aspartate protease, beta-site APP-cleaving enzyme 1 (BACE1), a critical regulator of amyloid precursor protein (APP) processing, modulates in vivo glucose disposal and insulin sensitivity in mice. Insulin-independent pathways to stimulate glucose uptake and GLUT4 translocation may offer alternative therapeutic avenues for the treatment of diabetes. We therefore addressed whether BACE1 activity, via APP processing, in skeletal muscle modifies glucose uptake and oxidation independently of insulin. Methods Skeletal muscle cell lines were used to investigate the effects of BACE1 and α-secretase inhibition and BACE1 and APP overexpression on glucose uptake, GLUT4 cell surface translocation, glucose oxidation and cellular respiration. Results In the absence of insulin, reduction of BACE1 activity increased glucose uptake and oxidation, GLUT4myc cell surface translocation, and basal rate of oxygen consumption. In contrast, overexpressing BACE1 in C 2 C 12 myotubes decreased glucose uptake, glucose oxidation and oxygen consumption rate. APP overexpression increased and α-secretase inhibition decreased glucose uptake in C 2 C 12 myotubes. The increase in glucose uptake elicited by BACE1 inhibition is dependent on phosphoinositide 3-kinase (PI3K) and mimicked by soluble APPα (sAPPα). Conclusions/interpretation Inhibition of muscle BACE1 activity increases insulin-independent, PI3K-dependent glucose uptake and cell surface translocation of GLUT4. As APP overexpression raises basal glucose uptake, and direct application of sAPPα increases PI3K–protein kinase B signalling and glucose uptake in myotubes, we suggest that α-secretase-dependent shedding of sAPPα regulates insulin-independent glucose uptake in skeletal muscle.</description><subject>Alzheimer's disease</subject><subject>Amyloid beta-Protein Precursor - genetics</subject><subject>Amyloid beta-Protein Precursor - metabolism</subject><subject>Amyloid Precursor Protein Secretases - genetics</subject><subject>Amyloid Precursor Protein Secretases - metabolism</subject><subject>Animals</subject><subject>Aspartic Acid Endopeptidases - genetics</subject><subject>Aspartic Acid Endopeptidases - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cell Line</subject><subject>Ceramides - pharmacology</subject><subject>Diabetes</subject><subject>Diabetes. Impaired glucose tolerance</subject><subject>Endocrine pancreas. Apud cells (diseases)</subject><subject>Endocrinopathies</subject><subject>Enzymes</subject><subject>Etiopathogenesis. Screening. Investigations. Target tissue resistance</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Human Physiology</subject><subject>Insulin resistance</subject><subject>Internal Medicine</subject><subject>Kinases</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolic Diseases</subject><subject>Metabolism</subject><subject>Muscle Fibers, Skeletal - drug effects</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Musculoskeletal system</subject><subject>Oxidation</subject><subject>Palmitic Acid - pharmacology</subject><subject>Proteins</subject><subject>Rats</subject><subject>Striated muscle. Tendons</subject><subject>Vertebrates: osteoarticular system, musculoskeletal system</subject><issn>0012-186X</issn><issn>1432-0428</issn><issn>1432-0428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kU2LFDEQhoMo7uzqD_AiDSLspbXSnXS6L8Ky-AULXhS8hXS6us2aScZ8yMy_N82M6yp4qkA99eategl5RuEVBRCvIwBteA2U1W3TDfX-AdlQ1jY1sKZ_SDZru6Z99_WMnMd4CwAtZ91jctawng1cwIb4K5sw4FSp7cF6M1W7gDqH6EN5-YTGrVVjjMYtVcAlW5UwVovN2kes8i6p71gpN1V-byaVjHdVGdLZprzqBj-hS9X24FMeMT4hj2ZlIz491Qvy5d3bz9cf6ptP7z9eX93UmrdtqsXIgMIwIqdCAWOAcz-LUVDOB9UI3k19P3UTYNt1SPU0sJmPs1Cd1moGzdoL8uaou8vjFiddPARl5S6YrQoH6ZWRf3ec-SYX_1MyEMPARBG4PAkE_yNjTHJrokZrlUOfo6S8HFoMvIeCvvgHvfU5uLLeSjWFoqwvFD1SOvgYA853ZijINU55jFOWOOUap9yXmef3t7ib-J1fAV6eABW1snNQTpv4h-s7yng7FK45crG03ILhnsX__v4Lcl-72A</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Hamilton, D. Lee</creator><creator>Findlay, John A.</creator><creator>Montagut, Gemma</creator><creator>Meakin, Paul J.</creator><creator>Bestow, Dawn</creator><creator>Jalicy, Susan M.</creator><creator>Ashford, Michael L. J.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140801</creationdate><title>Altered amyloid precursor protein processing regulates glucose uptake and oxidation in cultured rodent myotubes</title><author>Hamilton, D. Lee ; Findlay, John A. ; Montagut, Gemma ; Meakin, Paul J. ; Bestow, Dawn ; Jalicy, Susan M. ; Ashford, Michael L. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-7b40109be517a0440ef8f7b71559a2756d88d6d0e366e1cd94f5bf7a6ccaf0c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alzheimer's disease</topic><topic>Amyloid beta-Protein Precursor - genetics</topic><topic>Amyloid beta-Protein Precursor - metabolism</topic><topic>Amyloid Precursor Protein Secretases - genetics</topic><topic>Amyloid Precursor Protein Secretases - metabolism</topic><topic>Animals</topic><topic>Aspartic Acid Endopeptidases - genetics</topic><topic>Aspartic Acid Endopeptidases - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cell Line</topic><topic>Ceramides - pharmacology</topic><topic>Diabetes</topic><topic>Diabetes. Impaired glucose tolerance</topic><topic>Endocrine pancreas. Apud cells (diseases)</topic><topic>Endocrinopathies</topic><topic>Enzymes</topic><topic>Etiopathogenesis. Screening. Investigations. Target tissue resistance</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Human Physiology</topic><topic>Insulin resistance</topic><topic>Internal Medicine</topic><topic>Kinases</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolic Diseases</topic><topic>Metabolism</topic><topic>Muscle Fibers, Skeletal - drug effects</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Musculoskeletal system</topic><topic>Oxidation</topic><topic>Palmitic Acid - pharmacology</topic><topic>Proteins</topic><topic>Rats</topic><topic>Striated muscle. Tendons</topic><topic>Vertebrates: osteoarticular system, musculoskeletal system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamilton, D. Lee</creatorcontrib><creatorcontrib>Findlay, John A.</creatorcontrib><creatorcontrib>Montagut, Gemma</creatorcontrib><creatorcontrib>Meakin, Paul J.</creatorcontrib><creatorcontrib>Bestow, Dawn</creatorcontrib><creatorcontrib>Jalicy, Susan M.</creatorcontrib><creatorcontrib>Ashford, Michael L. J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamilton, D. Lee</au><au>Findlay, John A.</au><au>Montagut, Gemma</au><au>Meakin, Paul J.</au><au>Bestow, Dawn</au><au>Jalicy, Susan M.</au><au>Ashford, Michael L. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Altered amyloid precursor protein processing regulates glucose uptake and oxidation in cultured rodent myotubes</atitle><jtitle>Diabetologia</jtitle><stitle>Diabetologia</stitle><addtitle>Diabetologia</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>57</volume><issue>8</issue><spage>1684</spage><epage>1692</epage><pages>1684-1692</pages><issn>0012-186X</issn><issn>1432-0428</issn><eissn>1432-0428</eissn><abstract>Aims/hypothesis Impaired glucose uptake in skeletal muscle is an important contributor to glucose intolerance in type 2 diabetes. The aspartate protease, beta-site APP-cleaving enzyme 1 (BACE1), a critical regulator of amyloid precursor protein (APP) processing, modulates in vivo glucose disposal and insulin sensitivity in mice. Insulin-independent pathways to stimulate glucose uptake and GLUT4 translocation may offer alternative therapeutic avenues for the treatment of diabetes. We therefore addressed whether BACE1 activity, via APP processing, in skeletal muscle modifies glucose uptake and oxidation independently of insulin. Methods Skeletal muscle cell lines were used to investigate the effects of BACE1 and α-secretase inhibition and BACE1 and APP overexpression on glucose uptake, GLUT4 cell surface translocation, glucose oxidation and cellular respiration. Results In the absence of insulin, reduction of BACE1 activity increased glucose uptake and oxidation, GLUT4myc cell surface translocation, and basal rate of oxygen consumption. In contrast, overexpressing BACE1 in C 2 C 12 myotubes decreased glucose uptake, glucose oxidation and oxygen consumption rate. APP overexpression increased and α-secretase inhibition decreased glucose uptake in C 2 C 12 myotubes. The increase in glucose uptake elicited by BACE1 inhibition is dependent on phosphoinositide 3-kinase (PI3K) and mimicked by soluble APPα (sAPPα). Conclusions/interpretation Inhibition of muscle BACE1 activity increases insulin-independent, PI3K-dependent glucose uptake and cell surface translocation of GLUT4. As APP overexpression raises basal glucose uptake, and direct application of sAPPα increases PI3K–protein kinase B signalling and glucose uptake in myotubes, we suggest that α-secretase-dependent shedding of sAPPα regulates insulin-independent glucose uptake in skeletal muscle.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>24849570</pmid><doi>10.1007/s00125-014-3269-x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-186X
ispartof Diabetologia, 2014-08, Vol.57 (8), p.1684-1692
issn 0012-186X
1432-0428
1432-0428
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4079947
source Springer Link
subjects Alzheimer's disease
Amyloid beta-Protein Precursor - genetics
Amyloid beta-Protein Precursor - metabolism
Amyloid Precursor Protein Secretases - genetics
Amyloid Precursor Protein Secretases - metabolism
Animals
Aspartic Acid Endopeptidases - genetics
Aspartic Acid Endopeptidases - metabolism
Biological and medical sciences
Cell Line
Ceramides - pharmacology
Diabetes
Diabetes. Impaired glucose tolerance
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Enzymes
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Fundamental and applied biological sciences. Psychology
Glucose
Glucose - metabolism
Human Physiology
Insulin resistance
Internal Medicine
Kinases
Medical sciences
Medicine
Medicine & Public Health
Metabolic Diseases
Metabolism
Muscle Fibers, Skeletal - drug effects
Muscle Fibers, Skeletal - metabolism
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
Musculoskeletal system
Oxidation
Palmitic Acid - pharmacology
Proteins
Rats
Striated muscle. Tendons
Vertebrates: osteoarticular system, musculoskeletal system
title Altered amyloid precursor protein processing regulates glucose uptake and oxidation in cultured rodent myotubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Altered%20amyloid%20precursor%20protein%20processing%20regulates%20glucose%20uptake%20and%20oxidation%20in%20cultured%20rodent%20myotubes&rft.jtitle=Diabetologia&rft.au=Hamilton,%20D.%20Lee&rft.date=2014-08-01&rft.volume=57&rft.issue=8&rft.spage=1684&rft.epage=1692&rft.pages=1684-1692&rft.issn=0012-186X&rft.eissn=1432-0428&rft_id=info:doi/10.1007/s00125-014-3269-x&rft_dat=%3Cproquest_pubme%3E3359830061%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c533t-7b40109be517a0440ef8f7b71559a2756d88d6d0e366e1cd94f5bf7a6ccaf0c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1542279148&rft_id=info:pmid/24849570&rfr_iscdi=true