Loading…

Unique subunit packing in mycobacterial nanoRNase leads to alternate substrate recognitions in DHH phosphodiesterases

DHH superfamily includes RecJ, nanoRNases (NrnA), cyclic nucleotide phosphodiesterases and pyrophosphatases. In this study, we have carried out in vitro and in vivo investigations on the bifunctional NrnA-homolog from Mycobacterium smegmatis, MSMEG_2630. The crystal structure of MSMEG_2630 was deter...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2014-07, Vol.42 (12), p.7894-7910
Main Authors: Srivastav, Rajpal, Kumar, Dilip, Grover, Amit, Singh, Ajit, Manjasetty, Babu A, Sharma, Rakesh, Taneja, Bhupesh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c411t-727b264581eda7c0b676594708141ac381ecb75f70d5431196d624f2747384063
cites cdi_FETCH-LOGICAL-c411t-727b264581eda7c0b676594708141ac381ecb75f70d5431196d624f2747384063
container_end_page 7910
container_issue 12
container_start_page 7894
container_title Nucleic acids research
container_volume 42
creator Srivastav, Rajpal
Kumar, Dilip
Grover, Amit
Singh, Ajit
Manjasetty, Babu A
Sharma, Rakesh
Taneja, Bhupesh
description DHH superfamily includes RecJ, nanoRNases (NrnA), cyclic nucleotide phosphodiesterases and pyrophosphatases. In this study, we have carried out in vitro and in vivo investigations on the bifunctional NrnA-homolog from Mycobacterium smegmatis, MSMEG_2630. The crystal structure of MSMEG_2630 was determined to 2.2-Å resolution and reveals a dimer consisting of two identical subunits with each subunit folding into an N-terminal DHH domain and a C-terminal DHHA1 domain. The overall structure and fold of the individual domains is similar to other members of DHH superfamily. However, MSMEG_2630 exhibits a distinct quaternary structure in contrast to other DHH phosphodiesterases. This novel mode of subunit packing and variations in the linker region that enlarge the domain interface are responsible for alternate recognitions of substrates in the bifunctional nanoRNases. MSMEG_2630 exhibits bifunctional 3'-5' exonuclease [on both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) substrates] as well as CysQ-like phosphatase activity (on pAp) in vitro with a preference for nanoRNA substrates over single-stranded DNA of equivalent lengths. A transposon disruption of MSMEG_2630 in M. smegmatis causes growth impairment in the presence of various DNA-damaging agents. Further phylogenetic analysis and genome organization reveals clustering of bacterial nanoRNases into two distinct subfamilies with possible role in transcriptional and translational events during stress.
doi_str_mv 10.1093/nar/gku425
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4081065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1543285137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-727b264581eda7c0b676594708141ac381ecb75f70d5431196d624f2747384063</originalsourceid><addsrcrecordid>eNqNkUtLAzEUhYMoWh8bf4BkKcJo3slsBKmPCqIgug6ZTFqj06QmM4L_3tSq6M5FSMg998u5OQDsY3SMUU1Pgkkns5eBEb4GRpgKUrFakHUwQhTxCiOmtsB2zs8IYYY52wRbhCmpaoJHYHgM_nVwMA_NEHwPF8a--DCDPsD5u42Nsb1L3nQwmBDvb012sHOmzbCP0HSlFkz_2Z37tDwlZ-OsgHwMeQk5n0zg4inmslrvcmkoiLwLNqamy27va98Bj5cXD-NJdXN3dT0-u6ksw7ivJJENEYwr7FojLWqEFLxmEqkyiLG03NtG8qlELWcU41q0grApkUxSxZCgO-B0xV0Mzdy11oXistOL5OcmvetovP5bCf5Jz-KbZuUJJHgBHH4BUizflHs999m6rjPBxSFrrJASdXH4D2mxSBTHVBbp0UpqU8w5uemPI4z0MlJdItWrSIv44PcMP9LvDOkHk3WfbA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1543285137</pqid></control><display><type>article</type><title>Unique subunit packing in mycobacterial nanoRNase leads to alternate substrate recognitions in DHH phosphodiesterases</title><source>Oxford Open</source><source>PubMed Central</source><creator>Srivastav, Rajpal ; Kumar, Dilip ; Grover, Amit ; Singh, Ajit ; Manjasetty, Babu A ; Sharma, Rakesh ; Taneja, Bhupesh</creator><creatorcontrib>Srivastav, Rajpal ; Kumar, Dilip ; Grover, Amit ; Singh, Ajit ; Manjasetty, Babu A ; Sharma, Rakesh ; Taneja, Bhupesh</creatorcontrib><description>DHH superfamily includes RecJ, nanoRNases (NrnA), cyclic nucleotide phosphodiesterases and pyrophosphatases. In this study, we have carried out in vitro and in vivo investigations on the bifunctional NrnA-homolog from Mycobacterium smegmatis, MSMEG_2630. The crystal structure of MSMEG_2630 was determined to 2.2-Å resolution and reveals a dimer consisting of two identical subunits with each subunit folding into an N-terminal DHH domain and a C-terminal DHHA1 domain. The overall structure and fold of the individual domains is similar to other members of DHH superfamily. However, MSMEG_2630 exhibits a distinct quaternary structure in contrast to other DHH phosphodiesterases. This novel mode of subunit packing and variations in the linker region that enlarge the domain interface are responsible for alternate recognitions of substrates in the bifunctional nanoRNases. MSMEG_2630 exhibits bifunctional 3'-5' exonuclease [on both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) substrates] as well as CysQ-like phosphatase activity (on pAp) in vitro with a preference for nanoRNA substrates over single-stranded DNA of equivalent lengths. A transposon disruption of MSMEG_2630 in M. smegmatis causes growth impairment in the presence of various DNA-damaging agents. Further phylogenetic analysis and genome organization reveals clustering of bacterial nanoRNases into two distinct subfamilies with possible role in transcriptional and translational events during stress.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gku425</identifier><identifier>PMID: 24878921</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - classification ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Catalytic Domain ; Exonucleases - metabolism ; Models, Molecular ; Mutation ; Mycobacterium smegmatis ; Mycobacterium smegmatis - enzymology ; Nucleic Acid Enzymes ; Operon ; Phosphoric Diester Hydrolases - metabolism ; Phosphoric Monoester Hydrolases - metabolism ; Phylogeny ; Protein Structure, Tertiary ; Protein Subunits - chemistry ; Protein Subunits - classification ; Protein Subunits - genetics ; Protein Subunits - metabolism ; Ribonucleases - chemistry ; Ribonucleases - classification ; Ribonucleases - genetics ; Ribonucleases - metabolism ; Sequence Alignment</subject><ispartof>Nucleic acids research, 2014-07, Vol.42 (12), p.7894-7910</ispartof><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-727b264581eda7c0b676594708141ac381ecb75f70d5431196d624f2747384063</citedby><cites>FETCH-LOGICAL-c411t-727b264581eda7c0b676594708141ac381ecb75f70d5431196d624f2747384063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081065/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081065/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24878921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Srivastav, Rajpal</creatorcontrib><creatorcontrib>Kumar, Dilip</creatorcontrib><creatorcontrib>Grover, Amit</creatorcontrib><creatorcontrib>Singh, Ajit</creatorcontrib><creatorcontrib>Manjasetty, Babu A</creatorcontrib><creatorcontrib>Sharma, Rakesh</creatorcontrib><creatorcontrib>Taneja, Bhupesh</creatorcontrib><title>Unique subunit packing in mycobacterial nanoRNase leads to alternate substrate recognitions in DHH phosphodiesterases</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>DHH superfamily includes RecJ, nanoRNases (NrnA), cyclic nucleotide phosphodiesterases and pyrophosphatases. In this study, we have carried out in vitro and in vivo investigations on the bifunctional NrnA-homolog from Mycobacterium smegmatis, MSMEG_2630. The crystal structure of MSMEG_2630 was determined to 2.2-Å resolution and reveals a dimer consisting of two identical subunits with each subunit folding into an N-terminal DHH domain and a C-terminal DHHA1 domain. The overall structure and fold of the individual domains is similar to other members of DHH superfamily. However, MSMEG_2630 exhibits a distinct quaternary structure in contrast to other DHH phosphodiesterases. This novel mode of subunit packing and variations in the linker region that enlarge the domain interface are responsible for alternate recognitions of substrates in the bifunctional nanoRNases. MSMEG_2630 exhibits bifunctional 3'-5' exonuclease [on both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) substrates] as well as CysQ-like phosphatase activity (on pAp) in vitro with a preference for nanoRNA substrates over single-stranded DNA of equivalent lengths. A transposon disruption of MSMEG_2630 in M. smegmatis causes growth impairment in the presence of various DNA-damaging agents. Further phylogenetic analysis and genome organization reveals clustering of bacterial nanoRNases into two distinct subfamilies with possible role in transcriptional and translational events during stress.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - classification</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Catalytic Domain</subject><subject>Exonucleases - metabolism</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Mycobacterium smegmatis</subject><subject>Mycobacterium smegmatis - enzymology</subject><subject>Nucleic Acid Enzymes</subject><subject>Operon</subject><subject>Phosphoric Diester Hydrolases - metabolism</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Phylogeny</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - classification</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - metabolism</subject><subject>Ribonucleases - chemistry</subject><subject>Ribonucleases - classification</subject><subject>Ribonucleases - genetics</subject><subject>Ribonucleases - metabolism</subject><subject>Sequence Alignment</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLAzEUhYMoWh8bf4BkKcJo3slsBKmPCqIgug6ZTFqj06QmM4L_3tSq6M5FSMg998u5OQDsY3SMUU1Pgkkns5eBEb4GRpgKUrFakHUwQhTxCiOmtsB2zs8IYYY52wRbhCmpaoJHYHgM_nVwMA_NEHwPF8a--DCDPsD5u42Nsb1L3nQwmBDvb012sHOmzbCP0HSlFkz_2Z37tDwlZ-OsgHwMeQk5n0zg4inmslrvcmkoiLwLNqamy27va98Bj5cXD-NJdXN3dT0-u6ksw7ivJJENEYwr7FojLWqEFLxmEqkyiLG03NtG8qlELWcU41q0grApkUxSxZCgO-B0xV0Mzdy11oXistOL5OcmvetovP5bCf5Jz-KbZuUJJHgBHH4BUizflHs999m6rjPBxSFrrJASdXH4D2mxSBTHVBbp0UpqU8w5uemPI4z0MlJdItWrSIv44PcMP9LvDOkHk3WfbA</recordid><startdate>20140708</startdate><enddate>20140708</enddate><creator>Srivastav, Rajpal</creator><creator>Kumar, Dilip</creator><creator>Grover, Amit</creator><creator>Singh, Ajit</creator><creator>Manjasetty, Babu A</creator><creator>Sharma, Rakesh</creator><creator>Taneja, Bhupesh</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20140708</creationdate><title>Unique subunit packing in mycobacterial nanoRNase leads to alternate substrate recognitions in DHH phosphodiesterases</title><author>Srivastav, Rajpal ; Kumar, Dilip ; Grover, Amit ; Singh, Ajit ; Manjasetty, Babu A ; Sharma, Rakesh ; Taneja, Bhupesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-727b264581eda7c0b676594708141ac381ecb75f70d5431196d624f2747384063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - classification</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Catalytic Domain</topic><topic>Exonucleases - metabolism</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Mycobacterium smegmatis</topic><topic>Mycobacterium smegmatis - enzymology</topic><topic>Nucleic Acid Enzymes</topic><topic>Operon</topic><topic>Phosphoric Diester Hydrolases - metabolism</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Phylogeny</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - classification</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - metabolism</topic><topic>Ribonucleases - chemistry</topic><topic>Ribonucleases - classification</topic><topic>Ribonucleases - genetics</topic><topic>Ribonucleases - metabolism</topic><topic>Sequence Alignment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srivastav, Rajpal</creatorcontrib><creatorcontrib>Kumar, Dilip</creatorcontrib><creatorcontrib>Grover, Amit</creatorcontrib><creatorcontrib>Singh, Ajit</creatorcontrib><creatorcontrib>Manjasetty, Babu A</creatorcontrib><creatorcontrib>Sharma, Rakesh</creatorcontrib><creatorcontrib>Taneja, Bhupesh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srivastav, Rajpal</au><au>Kumar, Dilip</au><au>Grover, Amit</au><au>Singh, Ajit</au><au>Manjasetty, Babu A</au><au>Sharma, Rakesh</au><au>Taneja, Bhupesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unique subunit packing in mycobacterial nanoRNase leads to alternate substrate recognitions in DHH phosphodiesterases</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2014-07-08</date><risdate>2014</risdate><volume>42</volume><issue>12</issue><spage>7894</spage><epage>7910</epage><pages>7894-7910</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>DHH superfamily includes RecJ, nanoRNases (NrnA), cyclic nucleotide phosphodiesterases and pyrophosphatases. In this study, we have carried out in vitro and in vivo investigations on the bifunctional NrnA-homolog from Mycobacterium smegmatis, MSMEG_2630. The crystal structure of MSMEG_2630 was determined to 2.2-Å resolution and reveals a dimer consisting of two identical subunits with each subunit folding into an N-terminal DHH domain and a C-terminal DHHA1 domain. The overall structure and fold of the individual domains is similar to other members of DHH superfamily. However, MSMEG_2630 exhibits a distinct quaternary structure in contrast to other DHH phosphodiesterases. This novel mode of subunit packing and variations in the linker region that enlarge the domain interface are responsible for alternate recognitions of substrates in the bifunctional nanoRNases. MSMEG_2630 exhibits bifunctional 3'-5' exonuclease [on both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) substrates] as well as CysQ-like phosphatase activity (on pAp) in vitro with a preference for nanoRNA substrates over single-stranded DNA of equivalent lengths. A transposon disruption of MSMEG_2630 in M. smegmatis causes growth impairment in the presence of various DNA-damaging agents. Further phylogenetic analysis and genome organization reveals clustering of bacterial nanoRNases into two distinct subfamilies with possible role in transcriptional and translational events during stress.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>24878921</pmid><doi>10.1093/nar/gku425</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2014-07, Vol.42 (12), p.7894-7910
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4081065
source Oxford Open; PubMed Central
subjects Bacterial Proteins - chemistry
Bacterial Proteins - classification
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Catalytic Domain
Exonucleases - metabolism
Models, Molecular
Mutation
Mycobacterium smegmatis
Mycobacterium smegmatis - enzymology
Nucleic Acid Enzymes
Operon
Phosphoric Diester Hydrolases - metabolism
Phosphoric Monoester Hydrolases - metabolism
Phylogeny
Protein Structure, Tertiary
Protein Subunits - chemistry
Protein Subunits - classification
Protein Subunits - genetics
Protein Subunits - metabolism
Ribonucleases - chemistry
Ribonucleases - classification
Ribonucleases - genetics
Ribonucleases - metabolism
Sequence Alignment
title Unique subunit packing in mycobacterial nanoRNase leads to alternate substrate recognitions in DHH phosphodiesterases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unique%20subunit%20packing%20in%20mycobacterial%20nanoRNase%20leads%20to%20alternate%20substrate%20recognitions%20in%20DHH%20phosphodiesterases&rft.jtitle=Nucleic%20acids%20research&rft.au=Srivastav,%20Rajpal&rft.date=2014-07-08&rft.volume=42&rft.issue=12&rft.spage=7894&rft.epage=7910&rft.pages=7894-7910&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gku425&rft_dat=%3Cproquest_pubme%3E1543285137%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-727b264581eda7c0b676594708141ac381ecb75f70d5431196d624f2747384063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1543285137&rft_id=info:pmid/24878921&rfr_iscdi=true