Loading…

Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle's syndrome

Liddle's syndrome is an inherited form of hypertension linked to mutations in the epithelial Na+ channel (ENaC). ENaC is composed of three subunits (alpha, beta, gamma), each containing a COOH-terminal PY motif (xPPxY). Mutations causing Liddle's syndrome alter or delete the PY motifs of b...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of clinical investigation 1999-03, Vol.103 (5), p.667-673
Main Authors: Abriel, H, Loffing, J, Rebhun, J F, Pratt, J H, Schild, L, Horisberger, J D, Rotin, D, Staub, O
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Liddle's syndrome is an inherited form of hypertension linked to mutations in the epithelial Na+ channel (ENaC). ENaC is composed of three subunits (alpha, beta, gamma), each containing a COOH-terminal PY motif (xPPxY). Mutations causing Liddle's syndrome alter or delete the PY motifs of beta- or gamma-ENaC. We recently demonstrated that the ubiquitin-protein ligase Nedd4 binds these PY motifs and that ENaC is regulated by ubiquitination. Here, we investigate, using the Xenopus oocyte system, whether Nedd4 affects ENaC function. Overexpression of wild-type Nedd4, together with ENaC, inhibited channel activity, whereas a catalytically inactive Nedd4 stimulated it, likely by acting as a competitive antagonist to endogenous Nedd4. These effects were dependant on the PY motifs, because no Nedd4-mediated changes in channel activity were observed in ENaC lacking them. The effect of Nedd4 on ENaC missing only one PY motif (of beta-ENaC), as originally described in patients with Liddle's syndrome, was intermediate. Changes were due entirely to alterations in ENaC numbers at the plasma membrane, as determined by surface binding and immunofluorescence. Our results demonstrate that Nedd4 is a negative regulator of ENaC and suggest that the loss of Nedd4 binding sites in ENaC observed in Liddle's syndrome may explain the increase in channel number at the cell surface, increased Na+ reabsorption by the distal nephron, and hence the hypertension.
ISSN:0021-9738
DOI:10.1172/jci5713