Loading…

A 3D insight on the catalytic nanostructuration of few-layer graphene

The catalytic cutting of few-layer graphene is nowadays a hot topic in materials research due to its potential applications in the catalysis field and the graphene nanoribbons fabrication. We show here a 3D analysis of the nanostructuration of few-layer graphene by iron-based nanoparticles under hyd...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2014-06, Vol.5 (1), p.4109, Article 4109
Main Authors: Melinte, G., Florea, I., Moldovan, S., Janowska, I., Baaziz, W., Arenal, R., Wisnet, A., Scheu, C., Begin-Colin, S., Begin, D., Pham-Huu, C., Ersen, O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The catalytic cutting of few-layer graphene is nowadays a hot topic in materials research due to its potential applications in the catalysis field and the graphene nanoribbons fabrication. We show here a 3D analysis of the nanostructuration of few-layer graphene by iron-based nanoparticles under hydrogen flow. The nanoparticles located at the edges or attached to the steps on the FLG sheets create trenches and tunnels with orientations, lengths and morphologies defined by the crystallography and the topography of the carbon substrate. The cross-sectional analysis of the 3D volumes highlights the role of the active nanoparticle identity on the trench size and shape, with emphasis on the topographical stability of the basal planes within the resulting trenches and channels, no matter the obstacle encountered. The actual study gives a deep insight on the impact of nanoparticles morphology and support topography on the 3D character of nanostructures built up by catalytic cutting. The nanostructuration of graphene by catalytic cutting using iron oxide nanoparticles leads to the formation of well-defined trenches and tunnels. Here, the authors use electron microscopy to investigate this process in three dimensions and to gain insight into the formation and nature of these nanostructures.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms5109