Loading…
Dosage Compensation via Transposable Element Mediated Rewiring of a Regulatory Network
Transposable elements (TEs) may contribute to evolutionary innovations through the rewiring of networks by supplying ready-to-use eis regulatory elements. Genes on the Drosophila X chromosome are coordinately regulated by the male specific lethal (MSL) complex to achieve dosage compensation in males...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2013-11, Vol.342 (6160), p.846-850 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c542t-b3047ccb81cafc280052c4ee22a94acef02e5394580955c55dd65c33af8d6c333 |
---|---|
cites | cdi_FETCH-LOGICAL-c542t-b3047ccb81cafc280052c4ee22a94acef02e5394580955c55dd65c33af8d6c333 |
container_end_page | 850 |
container_issue | 6160 |
container_start_page | 846 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 342 |
creator | Ellison, Christopher E. Bachtrog, Doris |
description | Transposable elements (TEs) may contribute to evolutionary innovations through the rewiring of networks by supplying ready-to-use eis regulatory elements. Genes on the Drosophila X chromosome are coordinately regulated by the male specific lethal (MSL) complex to achieve dosage compensation in males. We show that the acquisition of dozens of MSL binding sites on evolutionarily new X chromosomes was facilitated by the independent co-option of a mutant helitron TE that attracts the MSL complex (TE domestication). The recently formed neo-X recruits helitrons that provide dozens of functional, but suboptimal, MSL binding sites, whereas the older XR chromosome has ceased acquisition and appears to have fine-tuned the binding affinities of more ancient elements for the MSL complex. Thus, TE-mediated rewiring of regulatory networks through domestication and amplification may be followed by fine-tuning of the cis-regulatory element supplied by the TE and erosion of nonfunctional regions. |
doi_str_mv | 10.1126/science.1239552 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4086361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42620096</jstor_id><sourcerecordid>42620096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-b3047ccb81cafc280052c4ee22a94acef02e5394580955c55dd65c33af8d6c333</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhS0EoqGwZgUaqRs209rXj4w3SCh9gFRAQoWt5XjuBIcZO9gzrfrv6yghomxYXVnn8_HxPYS8ZvSUMVBn2XkMDk8ZcC0lPCEzRrWsNVD-lMwo5apu6FwekRc5ryktmubPyREI4HwObEZ-nMdsV1gt4rDBkO3oY6huva1ukg15U8Rlj9VFjwOGsfqMrbcjttU3vPPJh1UVu8qW02rq7RjTffUFx7uYfr0kzzrbZ3y1n8fk--XFzeJjff316tPiw3XtpICxXnIq5s4tG-Zs56ChVIITiABWC-uwo4CSayGbklw6KdtWSce57ZpWlcmPyfud72ZaDti6EjLZ3mySH2y6N9F681gJ_qdZxVsjaKO4YsXg3d4gxd8T5tEMPjvsexswTtlAWRrXIKT8L8qE1EzOQW_Rk3_QdZxSKJvYUo1UCigU6mxHuRRzTtgdcjNqtvWafb1mX2-58fbv7x74P30W4M0OWOdSx0EXUB6kWvEH4qOsBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1458566202</pqid></control><display><type>article</type><title>Dosage Compensation via Transposable Element Mediated Rewiring of a Regulatory Network</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Ellison, Christopher E. ; Bachtrog, Doris</creator><creatorcontrib>Ellison, Christopher E. ; Bachtrog, Doris</creatorcontrib><description>Transposable elements (TEs) may contribute to evolutionary innovations through the rewiring of networks by supplying ready-to-use eis regulatory elements. Genes on the Drosophila X chromosome are coordinately regulated by the male specific lethal (MSL) complex to achieve dosage compensation in males. We show that the acquisition of dozens of MSL binding sites on evolutionarily new X chromosomes was facilitated by the independent co-option of a mutant helitron TE that attracts the MSL complex (TE domestication). The recently formed neo-X recruits helitrons that provide dozens of functional, but suboptimal, MSL binding sites, whereas the older XR chromosome has ceased acquisition and appears to have fine-tuned the binding affinities of more ancient elements for the MSL complex. Thus, TE-mediated rewiring of regulatory networks through domestication and amplification may be followed by fine-tuning of the cis-regulatory element supplied by the TE and erosion of nonfunctional regions.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1239552</identifier><identifier>PMID: 24233721</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Animals ; Binding Sites ; Chromatin ; Chromosomes ; Deoxyribonucleic acid ; DNA ; DNA Transposable Elements ; Dosage Compensation, Genetic ; Drosophila ; Drosophila - genetics ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Evolution ; Evolution, Molecular ; Gender ; gene dosage ; Gene Regulatory Networks ; Genes ; Genetic erosion ; Genetic transposition ; Genomes ; Genomics ; Helitrons ; Male ; males ; Regulatory Elements, Transcriptional ; sex chromosomes ; Tracheoesophageal fistula ; Transcription Factors - genetics ; Transcription Factors - metabolism ; transposons ; X chromosome ; X Chromosome - genetics ; X Chromosome - metabolism</subject><ispartof>Science (American Association for the Advancement of Science), 2013-11, Vol.342 (6160), p.846-850</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-b3047ccb81cafc280052c4ee22a94acef02e5394580955c55dd65c33af8d6c333</citedby><cites>FETCH-LOGICAL-c542t-b3047ccb81cafc280052c4ee22a94acef02e5394580955c55dd65c33af8d6c333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42620096$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42620096$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,2871,2872,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24233721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ellison, Christopher E.</creatorcontrib><creatorcontrib>Bachtrog, Doris</creatorcontrib><title>Dosage Compensation via Transposable Element Mediated Rewiring of a Regulatory Network</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Transposable elements (TEs) may contribute to evolutionary innovations through the rewiring of networks by supplying ready-to-use eis regulatory elements. Genes on the Drosophila X chromosome are coordinately regulated by the male specific lethal (MSL) complex to achieve dosage compensation in males. We show that the acquisition of dozens of MSL binding sites on evolutionarily new X chromosomes was facilitated by the independent co-option of a mutant helitron TE that attracts the MSL complex (TE domestication). The recently formed neo-X recruits helitrons that provide dozens of functional, but suboptimal, MSL binding sites, whereas the older XR chromosome has ceased acquisition and appears to have fine-tuned the binding affinities of more ancient elements for the MSL complex. Thus, TE-mediated rewiring of regulatory networks through domestication and amplification may be followed by fine-tuning of the cis-regulatory element supplied by the TE and erosion of nonfunctional regions.</description><subject>Animals</subject><subject>Binding Sites</subject><subject>Chromatin</subject><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Transposable Elements</subject><subject>Dosage Compensation, Genetic</subject><subject>Drosophila</subject><subject>Drosophila - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Gender</subject><subject>gene dosage</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Genetic erosion</subject><subject>Genetic transposition</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Helitrons</subject><subject>Male</subject><subject>males</subject><subject>Regulatory Elements, Transcriptional</subject><subject>sex chromosomes</subject><subject>Tracheoesophageal fistula</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>transposons</subject><subject>X chromosome</subject><subject>X Chromosome - genetics</subject><subject>X Chromosome - metabolism</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUtvEzEUhS0EoqGwZgUaqRs209rXj4w3SCh9gFRAQoWt5XjuBIcZO9gzrfrv6yghomxYXVnn8_HxPYS8ZvSUMVBn2XkMDk8ZcC0lPCEzRrWsNVD-lMwo5apu6FwekRc5ryktmubPyREI4HwObEZ-nMdsV1gt4rDBkO3oY6huva1ukg15U8Rlj9VFjwOGsfqMrbcjttU3vPPJh1UVu8qW02rq7RjTffUFx7uYfr0kzzrbZ3y1n8fk--XFzeJjff316tPiw3XtpICxXnIq5s4tG-Zs56ChVIITiABWC-uwo4CSayGbklw6KdtWSce57ZpWlcmPyfud72ZaDti6EjLZ3mySH2y6N9F681gJ_qdZxVsjaKO4YsXg3d4gxd8T5tEMPjvsexswTtlAWRrXIKT8L8qE1EzOQW_Rk3_QdZxSKJvYUo1UCigU6mxHuRRzTtgdcjNqtvWafb1mX2-58fbv7x74P30W4M0OWOdSx0EXUB6kWvEH4qOsBA</recordid><startdate>20131115</startdate><enddate>20131115</enddate><creator>Ellison, Christopher E.</creator><creator>Bachtrog, Doris</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20131115</creationdate><title>Dosage Compensation via Transposable Element Mediated Rewiring of a Regulatory Network</title><author>Ellison, Christopher E. ; Bachtrog, Doris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-b3047ccb81cafc280052c4ee22a94acef02e5394580955c55dd65c33af8d6c333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Binding Sites</topic><topic>Chromatin</topic><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Transposable Elements</topic><topic>Dosage Compensation, Genetic</topic><topic>Drosophila</topic><topic>Drosophila - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Gender</topic><topic>gene dosage</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Genetic erosion</topic><topic>Genetic transposition</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Helitrons</topic><topic>Male</topic><topic>males</topic><topic>Regulatory Elements, Transcriptional</topic><topic>sex chromosomes</topic><topic>Tracheoesophageal fistula</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>transposons</topic><topic>X chromosome</topic><topic>X Chromosome - genetics</topic><topic>X Chromosome - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellison, Christopher E.</creatorcontrib><creatorcontrib>Bachtrog, Doris</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellison, Christopher E.</au><au>Bachtrog, Doris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dosage Compensation via Transposable Element Mediated Rewiring of a Regulatory Network</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-11-15</date><risdate>2013</risdate><volume>342</volume><issue>6160</issue><spage>846</spage><epage>850</epage><pages>846-850</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Transposable elements (TEs) may contribute to evolutionary innovations through the rewiring of networks by supplying ready-to-use eis regulatory elements. Genes on the Drosophila X chromosome are coordinately regulated by the male specific lethal (MSL) complex to achieve dosage compensation in males. We show that the acquisition of dozens of MSL binding sites on evolutionarily new X chromosomes was facilitated by the independent co-option of a mutant helitron TE that attracts the MSL complex (TE domestication). The recently formed neo-X recruits helitrons that provide dozens of functional, but suboptimal, MSL binding sites, whereas the older XR chromosome has ceased acquisition and appears to have fine-tuned the binding affinities of more ancient elements for the MSL complex. Thus, TE-mediated rewiring of regulatory networks through domestication and amplification may be followed by fine-tuning of the cis-regulatory element supplied by the TE and erosion of nonfunctional regions.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>24233721</pmid><doi>10.1126/science.1239552</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2013-11, Vol.342 (6160), p.846-850 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4086361 |
source | American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection |
subjects | Animals Binding Sites Chromatin Chromosomes Deoxyribonucleic acid DNA DNA Transposable Elements Dosage Compensation, Genetic Drosophila Drosophila - genetics Drosophila Proteins - genetics Drosophila Proteins - metabolism Evolution Evolution, Molecular Gender gene dosage Gene Regulatory Networks Genes Genetic erosion Genetic transposition Genomes Genomics Helitrons Male males Regulatory Elements, Transcriptional sex chromosomes Tracheoesophageal fistula Transcription Factors - genetics Transcription Factors - metabolism transposons X chromosome X Chromosome - genetics X Chromosome - metabolism |
title | Dosage Compensation via Transposable Element Mediated Rewiring of a Regulatory Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dosage%20Compensation%20via%20Transposable%20Element%20Mediated%20Rewiring%20of%20a%20Regulatory%20Network&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Ellison,%20Christopher%20E.&rft.date=2013-11-15&rft.volume=342&rft.issue=6160&rft.spage=846&rft.epage=850&rft.pages=846-850&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1239552&rft_dat=%3Cjstor_pubme%3E42620096%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c542t-b3047ccb81cafc280052c4ee22a94acef02e5394580955c55dd65c33af8d6c333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1458566202&rft_id=info:pmid/24233721&rft_jstor_id=42620096&rfr_iscdi=true |