Loading…
Emodin prevents hypoxic-ischemic neuronal injury Involvement of the activin A pathway
Emodin, an extract of dried rhizomes and the root of the Rhizoma Polygoni Cuspidati, can protect neurons from hypoxic-ischemic brain damage. This study aimed to verify the underlying mechanism After PC12 cells had differentiated into neuron-like cells under the induction of mouse nerve growth factor...
Saved in:
Published in: | Neural regeneration research 2013-05, Vol.8 (15), p.1360-1367 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Emodin, an extract of dried rhizomes and the root of the Rhizoma Polygoni Cuspidati, can protect neurons from hypoxic-ischemic brain damage. This study aimed to verify the underlying mechanism After PC12 cells had differentiated into neuron-like cells under the induction of mouse nerve growth factor, cells were subjected to oxygen-glucose deprivation and treated with emodin. Results shewed that the viability of neuron-like cells cultured under an ischemia-hypoxia environment decreased, while the expression of activin A and caspase-3 in cells increased. Emodin raised the survival rate of oxygen-glucose deprived neuron-like cells~ increased activin A expression, and decreased caspase-3 expression. Experimental findings indicate that emodin can inhibit neuronal apoptosis and alleviate the injury of nerve cells after oxygen-glucose deprivation through the activin A pathway. |
---|---|
ISSN: | 1673-5374 1876-7958 |
DOI: | 10.3969/j.issn.1673-5374.2013.15.002 |