Loading…
Biosynthesis of a Central Intermediate in Hydrogen Sulfide Metabolism by a Novel Human Sulfurtransferase and Its Yeast Ortholog
Human sulfide:quinone oxidoreductase (SQOR) catalyzes the conversion of H2S to thiosulfate, the first step in mammalian H2S metabolism. SQOR’s inability to produce the glutathione persulfide (GSS–) substrate for sulfur dioxygenase (SDO) suggested that a thiosulfate:glutathione sulfurtransferase (TST...
Saved in:
Published in: | Biochemistry (Easton) 2014-07, Vol.53 (28), p.4739-4753 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a504t-1969fbe1573f5e6d57e646c0f8f00f032d33a122d8213b565662f9993f86c9203 |
---|---|
cites | cdi_FETCH-LOGICAL-a504t-1969fbe1573f5e6d57e646c0f8f00f032d33a122d8213b565662f9993f86c9203 |
container_end_page | 4753 |
container_issue | 28 |
container_start_page | 4739 |
container_title | Biochemistry (Easton) |
container_volume | 53 |
creator | Melideo, Scott L Jackson, Michael R Jorns, Marilyn Schuman |
description | Human sulfide:quinone oxidoreductase (SQOR) catalyzes the conversion of H2S to thiosulfate, the first step in mammalian H2S metabolism. SQOR’s inability to produce the glutathione persulfide (GSS–) substrate for sulfur dioxygenase (SDO) suggested that a thiosulfate:glutathione sulfurtransferase (TST) was required to provide the missing link between the SQOR and SDO reactions. Although TST could be purified from yeast, attempts to isolate the mammalian enzyme were not successful. We used bioinformatic approaches to identify genes likely to encode human TST (TSTD1) and its yeast ortholog (RDL1). Recombinant TSTD1 and RDL1 catalyze a predicted thiosulfate-dependent conversion of glutathione to GSS–. Both enzymes contain a rhodanese homology domain and a single catalytically essential cysteine, which is converted to cysteine persulfide upon reaction with thiosulfate. GSS– is a potent inhibitor of TSTD1 and RDL1, as judged by initial rate accelerations and ≥25-fold lower K m values for glutathione observed in the presence of SDO. The combined action of GSS– and SDO is likely to regulate the biosynthesis of the reactive metabolite. SDO drives to completion p-toluenethiosulfonate:glutathione sulfurtransferase reactions catalyzed by TSTD1 and RDL1. The thermodynamic coupling of the irreversible SDO and reversible TST reactions provides a model for the physiologically relevant reaction with thiosulfate as the sulfane donor. The discovery of bacterial Rosetta Stone proteins that comprise fusions of SDO and TSTD1 provides phylogenetic evidence of the association of these enzymes. The presence of adjacent bacterial genes encoding SDO–TSTD1 fusion proteins and human-like SQORs suggests these prokaryotes and mammals exhibit strikingly similar pathways for H2S metabolism. |
doi_str_mv | 10.1021/bi500650h |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4108183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1836642684</sourcerecordid><originalsourceid>FETCH-LOGICAL-a504t-1969fbe1573f5e6d57e646c0f8f00f032d33a122d8213b565662f9993f86c9203</originalsourceid><addsrcrecordid>eNptkc2KFDEURoMoTs_owheQbARdlOa_KxtBG8duGJ2FunAVUlU33RmqkjFJDfTKVzdSY6PgKiT35CT3fgg9o-Q1JYy-6bwkRElyeIBWVDLSCK3lQ7Qi9bRhWpEzdJ7zTd0KshaP0RkTuqWK0xX6-d7HfAzlANlnHB22eAOhJDviXSiQJhi8LYB9wNvjkOIeAv4yj84PgD9BsV0cfZ5wd6wXP8c7GPF2nuzCzKl6QnaQbAZsw4B3JePvYHPB16kc4hj3T9AjZ8cMT-_XC_Tt8sPXzba5uv6427y7aqwkojRUK-06oHLNnQQ1yDUooXriWkeII5wNnFvK2NAyyjuppFLMaa25a1WvGeEX6O3ivZ272lO_9Ghuk59sOppovfm3EvzB7OOdEZS0tOVV8PJekOKPGXIxk889jKMNEOdsKqOUYKoVFX21oH2KOSdwp2coMb8DM6fAKvv873-dyD8JVeDFAtg-m5s4p1DH9B_RL2yinis</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1836642684</pqid></control><display><type>article</type><title>Biosynthesis of a Central Intermediate in Hydrogen Sulfide Metabolism by a Novel Human Sulfurtransferase and Its Yeast Ortholog</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Melideo, Scott L ; Jackson, Michael R ; Jorns, Marilyn Schuman</creator><creatorcontrib>Melideo, Scott L ; Jackson, Michael R ; Jorns, Marilyn Schuman</creatorcontrib><description>Human sulfide:quinone oxidoreductase (SQOR) catalyzes the conversion of H2S to thiosulfate, the first step in mammalian H2S metabolism. SQOR’s inability to produce the glutathione persulfide (GSS–) substrate for sulfur dioxygenase (SDO) suggested that a thiosulfate:glutathione sulfurtransferase (TST) was required to provide the missing link between the SQOR and SDO reactions. Although TST could be purified from yeast, attempts to isolate the mammalian enzyme were not successful. We used bioinformatic approaches to identify genes likely to encode human TST (TSTD1) and its yeast ortholog (RDL1). Recombinant TSTD1 and RDL1 catalyze a predicted thiosulfate-dependent conversion of glutathione to GSS–. Both enzymes contain a rhodanese homology domain and a single catalytically essential cysteine, which is converted to cysteine persulfide upon reaction with thiosulfate. GSS– is a potent inhibitor of TSTD1 and RDL1, as judged by initial rate accelerations and ≥25-fold lower K m values for glutathione observed in the presence of SDO. The combined action of GSS– and SDO is likely to regulate the biosynthesis of the reactive metabolite. SDO drives to completion p-toluenethiosulfonate:glutathione sulfurtransferase reactions catalyzed by TSTD1 and RDL1. The thermodynamic coupling of the irreversible SDO and reversible TST reactions provides a model for the physiologically relevant reaction with thiosulfate as the sulfane donor. The discovery of bacterial Rosetta Stone proteins that comprise fusions of SDO and TSTD1 provides phylogenetic evidence of the association of these enzymes. The presence of adjacent bacterial genes encoding SDO–TSTD1 fusion proteins and human-like SQORs suggests these prokaryotes and mammals exhibit strikingly similar pathways for H2S metabolism.</description><identifier>ISSN: 0006-2960</identifier><identifier>ISSN: 1520-4995</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi500650h</identifier><identifier>PMID: 24981631</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>bioinformatics ; biosynthesis ; cysteine ; genes ; glutathione ; Humans ; hydrogen sulfide ; Hydrogen Sulfide - chemistry ; Hydrogen Sulfide - metabolism ; metabolites ; Neoplasm Proteins - chemistry ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; phylogeny ; prokaryotic cells ; Protein Structure, Tertiary ; proteins ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; sequence homology ; Structural Homology, Protein ; sulfur ; thermodynamics ; thiosulfate sulfurtransferase ; thiosulfates ; yeasts</subject><ispartof>Biochemistry (Easton), 2014-07, Vol.53 (28), p.4739-4753</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>Copyright © 2014 American Chemical Society 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a504t-1969fbe1573f5e6d57e646c0f8f00f032d33a122d8213b565662f9993f86c9203</citedby><cites>FETCH-LOGICAL-a504t-1969fbe1573f5e6d57e646c0f8f00f032d33a122d8213b565662f9993f86c9203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24981631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Melideo, Scott L</creatorcontrib><creatorcontrib>Jackson, Michael R</creatorcontrib><creatorcontrib>Jorns, Marilyn Schuman</creatorcontrib><title>Biosynthesis of a Central Intermediate in Hydrogen Sulfide Metabolism by a Novel Human Sulfurtransferase and Its Yeast Ortholog</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Human sulfide:quinone oxidoreductase (SQOR) catalyzes the conversion of H2S to thiosulfate, the first step in mammalian H2S metabolism. SQOR’s inability to produce the glutathione persulfide (GSS–) substrate for sulfur dioxygenase (SDO) suggested that a thiosulfate:glutathione sulfurtransferase (TST) was required to provide the missing link between the SQOR and SDO reactions. Although TST could be purified from yeast, attempts to isolate the mammalian enzyme were not successful. We used bioinformatic approaches to identify genes likely to encode human TST (TSTD1) and its yeast ortholog (RDL1). Recombinant TSTD1 and RDL1 catalyze a predicted thiosulfate-dependent conversion of glutathione to GSS–. Both enzymes contain a rhodanese homology domain and a single catalytically essential cysteine, which is converted to cysteine persulfide upon reaction with thiosulfate. GSS– is a potent inhibitor of TSTD1 and RDL1, as judged by initial rate accelerations and ≥25-fold lower K m values for glutathione observed in the presence of SDO. The combined action of GSS– and SDO is likely to regulate the biosynthesis of the reactive metabolite. SDO drives to completion p-toluenethiosulfonate:glutathione sulfurtransferase reactions catalyzed by TSTD1 and RDL1. The thermodynamic coupling of the irreversible SDO and reversible TST reactions provides a model for the physiologically relevant reaction with thiosulfate as the sulfane donor. The discovery of bacterial Rosetta Stone proteins that comprise fusions of SDO and TSTD1 provides phylogenetic evidence of the association of these enzymes. The presence of adjacent bacterial genes encoding SDO–TSTD1 fusion proteins and human-like SQORs suggests these prokaryotes and mammals exhibit strikingly similar pathways for H2S metabolism.</description><subject>bioinformatics</subject><subject>biosynthesis</subject><subject>cysteine</subject><subject>genes</subject><subject>glutathione</subject><subject>Humans</subject><subject>hydrogen sulfide</subject><subject>Hydrogen Sulfide - chemistry</subject><subject>Hydrogen Sulfide - metabolism</subject><subject>metabolites</subject><subject>Neoplasm Proteins - chemistry</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>phylogeny</subject><subject>prokaryotic cells</subject><subject>Protein Structure, Tertiary</subject><subject>proteins</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>sequence homology</subject><subject>Structural Homology, Protein</subject><subject>sulfur</subject><subject>thermodynamics</subject><subject>thiosulfate sulfurtransferase</subject><subject>thiosulfates</subject><subject>yeasts</subject><issn>0006-2960</issn><issn>1520-4995</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><recordid>eNptkc2KFDEURoMoTs_owheQbARdlOa_KxtBG8duGJ2FunAVUlU33RmqkjFJDfTKVzdSY6PgKiT35CT3fgg9o-Q1JYy-6bwkRElyeIBWVDLSCK3lQ7Qi9bRhWpEzdJ7zTd0KshaP0RkTuqWK0xX6-d7HfAzlANlnHB22eAOhJDviXSiQJhi8LYB9wNvjkOIeAv4yj84PgD9BsV0cfZ5wd6wXP8c7GPF2nuzCzKl6QnaQbAZsw4B3JePvYHPB16kc4hj3T9AjZ8cMT-_XC_Tt8sPXzba5uv6427y7aqwkojRUK-06oHLNnQQ1yDUooXriWkeII5wNnFvK2NAyyjuppFLMaa25a1WvGeEX6O3ivZ272lO_9Ghuk59sOppovfm3EvzB7OOdEZS0tOVV8PJekOKPGXIxk889jKMNEOdsKqOUYKoVFX21oH2KOSdwp2coMb8DM6fAKvv873-dyD8JVeDFAtg-m5s4p1DH9B_RL2yinis</recordid><startdate>20140722</startdate><enddate>20140722</enddate><creator>Melideo, Scott L</creator><creator>Jackson, Michael R</creator><creator>Jorns, Marilyn Schuman</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140722</creationdate><title>Biosynthesis of a Central Intermediate in Hydrogen Sulfide Metabolism by a Novel Human Sulfurtransferase and Its Yeast Ortholog</title><author>Melideo, Scott L ; Jackson, Michael R ; Jorns, Marilyn Schuman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a504t-1969fbe1573f5e6d57e646c0f8f00f032d33a122d8213b565662f9993f86c9203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>bioinformatics</topic><topic>biosynthesis</topic><topic>cysteine</topic><topic>genes</topic><topic>glutathione</topic><topic>Humans</topic><topic>hydrogen sulfide</topic><topic>Hydrogen Sulfide - chemistry</topic><topic>Hydrogen Sulfide - metabolism</topic><topic>metabolites</topic><topic>Neoplasm Proteins - chemistry</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>phylogeny</topic><topic>prokaryotic cells</topic><topic>Protein Structure, Tertiary</topic><topic>proteins</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>sequence homology</topic><topic>Structural Homology, Protein</topic><topic>sulfur</topic><topic>thermodynamics</topic><topic>thiosulfate sulfurtransferase</topic><topic>thiosulfates</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melideo, Scott L</creatorcontrib><creatorcontrib>Jackson, Michael R</creatorcontrib><creatorcontrib>Jorns, Marilyn Schuman</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melideo, Scott L</au><au>Jackson, Michael R</au><au>Jorns, Marilyn Schuman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biosynthesis of a Central Intermediate in Hydrogen Sulfide Metabolism by a Novel Human Sulfurtransferase and Its Yeast Ortholog</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2014-07-22</date><risdate>2014</risdate><volume>53</volume><issue>28</issue><spage>4739</spage><epage>4753</epage><pages>4739-4753</pages><issn>0006-2960</issn><issn>1520-4995</issn><eissn>1520-4995</eissn><abstract>Human sulfide:quinone oxidoreductase (SQOR) catalyzes the conversion of H2S to thiosulfate, the first step in mammalian H2S metabolism. SQOR’s inability to produce the glutathione persulfide (GSS–) substrate for sulfur dioxygenase (SDO) suggested that a thiosulfate:glutathione sulfurtransferase (TST) was required to provide the missing link between the SQOR and SDO reactions. Although TST could be purified from yeast, attempts to isolate the mammalian enzyme were not successful. We used bioinformatic approaches to identify genes likely to encode human TST (TSTD1) and its yeast ortholog (RDL1). Recombinant TSTD1 and RDL1 catalyze a predicted thiosulfate-dependent conversion of glutathione to GSS–. Both enzymes contain a rhodanese homology domain and a single catalytically essential cysteine, which is converted to cysteine persulfide upon reaction with thiosulfate. GSS– is a potent inhibitor of TSTD1 and RDL1, as judged by initial rate accelerations and ≥25-fold lower K m values for glutathione observed in the presence of SDO. The combined action of GSS– and SDO is likely to regulate the biosynthesis of the reactive metabolite. SDO drives to completion p-toluenethiosulfonate:glutathione sulfurtransferase reactions catalyzed by TSTD1 and RDL1. The thermodynamic coupling of the irreversible SDO and reversible TST reactions provides a model for the physiologically relevant reaction with thiosulfate as the sulfane donor. The discovery of bacterial Rosetta Stone proteins that comprise fusions of SDO and TSTD1 provides phylogenetic evidence of the association of these enzymes. The presence of adjacent bacterial genes encoding SDO–TSTD1 fusion proteins and human-like SQORs suggests these prokaryotes and mammals exhibit strikingly similar pathways for H2S metabolism.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24981631</pmid><doi>10.1021/bi500650h</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2014-07, Vol.53 (28), p.4739-4753 |
issn | 0006-2960 1520-4995 1520-4995 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4108183 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | bioinformatics biosynthesis cysteine genes glutathione Humans hydrogen sulfide Hydrogen Sulfide - chemistry Hydrogen Sulfide - metabolism metabolites Neoplasm Proteins - chemistry Neoplasm Proteins - genetics Neoplasm Proteins - metabolism phylogeny prokaryotic cells Protein Structure, Tertiary proteins Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism sequence homology Structural Homology, Protein sulfur thermodynamics thiosulfate sulfurtransferase thiosulfates yeasts |
title | Biosynthesis of a Central Intermediate in Hydrogen Sulfide Metabolism by a Novel Human Sulfurtransferase and Its Yeast Ortholog |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biosynthesis%20of%20a%20Central%20Intermediate%20in%20Hydrogen%20Sulfide%20Metabolism%20by%20a%20Novel%20Human%20Sulfurtransferase%20and%20Its%20Yeast%20Ortholog&rft.jtitle=Biochemistry%20(Easton)&rft.au=Melideo,%20Scott%20L&rft.date=2014-07-22&rft.volume=53&rft.issue=28&rft.spage=4739&rft.epage=4753&rft.pages=4739-4753&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi500650h&rft_dat=%3Cproquest_pubme%3E1836642684%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a504t-1969fbe1573f5e6d57e646c0f8f00f032d33a122d8213b565662f9993f86c9203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1836642684&rft_id=info:pmid/24981631&rfr_iscdi=true |