Loading…

Biosynthesis of a Central Intermediate in Hydrogen Sulfide Metabolism by a Novel Human Sulfurtransferase and Its Yeast Ortholog

Human sulfide:quinone oxidoreductase (SQOR) catalyzes the conversion of H2S to thiosulfate, the first step in mammalian H2S metabolism. SQOR’s inability to produce the glutathione persulfide (GSS–) substrate for sulfur dioxygenase (SDO) suggested that a thiosulfate:glutathione sulfurtransferase (TST...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2014-07, Vol.53 (28), p.4739-4753
Main Authors: Melideo, Scott L, Jackson, Michael R, Jorns, Marilyn Schuman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a504t-1969fbe1573f5e6d57e646c0f8f00f032d33a122d8213b565662f9993f86c9203
cites cdi_FETCH-LOGICAL-a504t-1969fbe1573f5e6d57e646c0f8f00f032d33a122d8213b565662f9993f86c9203
container_end_page 4753
container_issue 28
container_start_page 4739
container_title Biochemistry (Easton)
container_volume 53
creator Melideo, Scott L
Jackson, Michael R
Jorns, Marilyn Schuman
description Human sulfide:quinone oxidoreductase (SQOR) catalyzes the conversion of H2S to thiosulfate, the first step in mammalian H2S metabolism. SQOR’s inability to produce the glutathione persulfide (GSS–) substrate for sulfur dioxygenase (SDO) suggested that a thiosulfate:glutathione sulfurtransferase (TST) was required to provide the missing link between the SQOR and SDO reactions. Although TST could be purified from yeast, attempts to isolate the mammalian enzyme were not successful. We used bioinformatic approaches to identify genes likely to encode human TST (TSTD1) and its yeast ortholog (RDL1). Recombinant TSTD1 and RDL1 catalyze a predicted thiosulfate-dependent conversion of glutathione to GSS–. Both enzymes contain a rhodanese homology domain and a single catalytically essential cysteine, which is converted to cysteine persulfide upon reaction with thiosulfate. GSS– is a potent inhibitor of TSTD1 and RDL1, as judged by initial rate accelerations and ≥25-fold lower K m values for glutathione observed in the presence of SDO. The combined action of GSS– and SDO is likely to regulate the biosynthesis of the reactive metabolite. SDO drives to completion p-toluenethiosulfonate:glutathione sulfurtransferase reactions catalyzed by TSTD1 and RDL1. The thermodynamic coupling of the irreversible SDO and reversible TST reactions provides a model for the physiologically relevant reaction with thiosulfate as the sulfane donor. The discovery of bacterial Rosetta Stone proteins that comprise fusions of SDO and TSTD1 provides phylogenetic evidence of the association of these enzymes. The presence of adjacent bacterial genes encoding SDO–TSTD1 fusion proteins and human-like SQORs suggests these prokaryotes and mammals exhibit strikingly similar pathways for H2S metabolism.
doi_str_mv 10.1021/bi500650h
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4108183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1836642684</sourcerecordid><originalsourceid>FETCH-LOGICAL-a504t-1969fbe1573f5e6d57e646c0f8f00f032d33a122d8213b565662f9993f86c9203</originalsourceid><addsrcrecordid>eNptkc2KFDEURoMoTs_owheQbARdlOa_KxtBG8duGJ2FunAVUlU33RmqkjFJDfTKVzdSY6PgKiT35CT3fgg9o-Q1JYy-6bwkRElyeIBWVDLSCK3lQ7Qi9bRhWpEzdJ7zTd0KshaP0RkTuqWK0xX6-d7HfAzlANlnHB22eAOhJDviXSiQJhi8LYB9wNvjkOIeAv4yj84PgD9BsV0cfZ5wd6wXP8c7GPF2nuzCzKl6QnaQbAZsw4B3JePvYHPB16kc4hj3T9AjZ8cMT-_XC_Tt8sPXzba5uv6427y7aqwkojRUK-06oHLNnQQ1yDUooXriWkeII5wNnFvK2NAyyjuppFLMaa25a1WvGeEX6O3ivZ272lO_9Ghuk59sOppovfm3EvzB7OOdEZS0tOVV8PJekOKPGXIxk889jKMNEOdsKqOUYKoVFX21oH2KOSdwp2coMb8DM6fAKvv873-dyD8JVeDFAtg-m5s4p1DH9B_RL2yinis</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1836642684</pqid></control><display><type>article</type><title>Biosynthesis of a Central Intermediate in Hydrogen Sulfide Metabolism by a Novel Human Sulfurtransferase and Its Yeast Ortholog</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Melideo, Scott L ; Jackson, Michael R ; Jorns, Marilyn Schuman</creator><creatorcontrib>Melideo, Scott L ; Jackson, Michael R ; Jorns, Marilyn Schuman</creatorcontrib><description>Human sulfide:quinone oxidoreductase (SQOR) catalyzes the conversion of H2S to thiosulfate, the first step in mammalian H2S metabolism. SQOR’s inability to produce the glutathione persulfide (GSS–) substrate for sulfur dioxygenase (SDO) suggested that a thiosulfate:glutathione sulfurtransferase (TST) was required to provide the missing link between the SQOR and SDO reactions. Although TST could be purified from yeast, attempts to isolate the mammalian enzyme were not successful. We used bioinformatic approaches to identify genes likely to encode human TST (TSTD1) and its yeast ortholog (RDL1). Recombinant TSTD1 and RDL1 catalyze a predicted thiosulfate-dependent conversion of glutathione to GSS–. Both enzymes contain a rhodanese homology domain and a single catalytically essential cysteine, which is converted to cysteine persulfide upon reaction with thiosulfate. GSS– is a potent inhibitor of TSTD1 and RDL1, as judged by initial rate accelerations and ≥25-fold lower K m values for glutathione observed in the presence of SDO. The combined action of GSS– and SDO is likely to regulate the biosynthesis of the reactive metabolite. SDO drives to completion p-toluenethiosulfonate:glutathione sulfurtransferase reactions catalyzed by TSTD1 and RDL1. The thermodynamic coupling of the irreversible SDO and reversible TST reactions provides a model for the physiologically relevant reaction with thiosulfate as the sulfane donor. The discovery of bacterial Rosetta Stone proteins that comprise fusions of SDO and TSTD1 provides phylogenetic evidence of the association of these enzymes. The presence of adjacent bacterial genes encoding SDO–TSTD1 fusion proteins and human-like SQORs suggests these prokaryotes and mammals exhibit strikingly similar pathways for H2S metabolism.</description><identifier>ISSN: 0006-2960</identifier><identifier>ISSN: 1520-4995</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi500650h</identifier><identifier>PMID: 24981631</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>bioinformatics ; biosynthesis ; cysteine ; genes ; glutathione ; Humans ; hydrogen sulfide ; Hydrogen Sulfide - chemistry ; Hydrogen Sulfide - metabolism ; metabolites ; Neoplasm Proteins - chemistry ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; phylogeny ; prokaryotic cells ; Protein Structure, Tertiary ; proteins ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; sequence homology ; Structural Homology, Protein ; sulfur ; thermodynamics ; thiosulfate sulfurtransferase ; thiosulfates ; yeasts</subject><ispartof>Biochemistry (Easton), 2014-07, Vol.53 (28), p.4739-4753</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>Copyright © 2014 American Chemical Society 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a504t-1969fbe1573f5e6d57e646c0f8f00f032d33a122d8213b565662f9993f86c9203</citedby><cites>FETCH-LOGICAL-a504t-1969fbe1573f5e6d57e646c0f8f00f032d33a122d8213b565662f9993f86c9203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24981631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Melideo, Scott L</creatorcontrib><creatorcontrib>Jackson, Michael R</creatorcontrib><creatorcontrib>Jorns, Marilyn Schuman</creatorcontrib><title>Biosynthesis of a Central Intermediate in Hydrogen Sulfide Metabolism by a Novel Human Sulfurtransferase and Its Yeast Ortholog</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Human sulfide:quinone oxidoreductase (SQOR) catalyzes the conversion of H2S to thiosulfate, the first step in mammalian H2S metabolism. SQOR’s inability to produce the glutathione persulfide (GSS–) substrate for sulfur dioxygenase (SDO) suggested that a thiosulfate:glutathione sulfurtransferase (TST) was required to provide the missing link between the SQOR and SDO reactions. Although TST could be purified from yeast, attempts to isolate the mammalian enzyme were not successful. We used bioinformatic approaches to identify genes likely to encode human TST (TSTD1) and its yeast ortholog (RDL1). Recombinant TSTD1 and RDL1 catalyze a predicted thiosulfate-dependent conversion of glutathione to GSS–. Both enzymes contain a rhodanese homology domain and a single catalytically essential cysteine, which is converted to cysteine persulfide upon reaction with thiosulfate. GSS– is a potent inhibitor of TSTD1 and RDL1, as judged by initial rate accelerations and ≥25-fold lower K m values for glutathione observed in the presence of SDO. The combined action of GSS– and SDO is likely to regulate the biosynthesis of the reactive metabolite. SDO drives to completion p-toluenethiosulfonate:glutathione sulfurtransferase reactions catalyzed by TSTD1 and RDL1. The thermodynamic coupling of the irreversible SDO and reversible TST reactions provides a model for the physiologically relevant reaction with thiosulfate as the sulfane donor. The discovery of bacterial Rosetta Stone proteins that comprise fusions of SDO and TSTD1 provides phylogenetic evidence of the association of these enzymes. The presence of adjacent bacterial genes encoding SDO–TSTD1 fusion proteins and human-like SQORs suggests these prokaryotes and mammals exhibit strikingly similar pathways for H2S metabolism.</description><subject>bioinformatics</subject><subject>biosynthesis</subject><subject>cysteine</subject><subject>genes</subject><subject>glutathione</subject><subject>Humans</subject><subject>hydrogen sulfide</subject><subject>Hydrogen Sulfide - chemistry</subject><subject>Hydrogen Sulfide - metabolism</subject><subject>metabolites</subject><subject>Neoplasm Proteins - chemistry</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>phylogeny</subject><subject>prokaryotic cells</subject><subject>Protein Structure, Tertiary</subject><subject>proteins</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>sequence homology</subject><subject>Structural Homology, Protein</subject><subject>sulfur</subject><subject>thermodynamics</subject><subject>thiosulfate sulfurtransferase</subject><subject>thiosulfates</subject><subject>yeasts</subject><issn>0006-2960</issn><issn>1520-4995</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><recordid>eNptkc2KFDEURoMoTs_owheQbARdlOa_KxtBG8duGJ2FunAVUlU33RmqkjFJDfTKVzdSY6PgKiT35CT3fgg9o-Q1JYy-6bwkRElyeIBWVDLSCK3lQ7Qi9bRhWpEzdJ7zTd0KshaP0RkTuqWK0xX6-d7HfAzlANlnHB22eAOhJDviXSiQJhi8LYB9wNvjkOIeAv4yj84PgD9BsV0cfZ5wd6wXP8c7GPF2nuzCzKl6QnaQbAZsw4B3JePvYHPB16kc4hj3T9AjZ8cMT-_XC_Tt8sPXzba5uv6427y7aqwkojRUK-06oHLNnQQ1yDUooXriWkeII5wNnFvK2NAyyjuppFLMaa25a1WvGeEX6O3ivZ272lO_9Ghuk59sOppovfm3EvzB7OOdEZS0tOVV8PJekOKPGXIxk889jKMNEOdsKqOUYKoVFX21oH2KOSdwp2coMb8DM6fAKvv873-dyD8JVeDFAtg-m5s4p1DH9B_RL2yinis</recordid><startdate>20140722</startdate><enddate>20140722</enddate><creator>Melideo, Scott L</creator><creator>Jackson, Michael R</creator><creator>Jorns, Marilyn Schuman</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140722</creationdate><title>Biosynthesis of a Central Intermediate in Hydrogen Sulfide Metabolism by a Novel Human Sulfurtransferase and Its Yeast Ortholog</title><author>Melideo, Scott L ; Jackson, Michael R ; Jorns, Marilyn Schuman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a504t-1969fbe1573f5e6d57e646c0f8f00f032d33a122d8213b565662f9993f86c9203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>bioinformatics</topic><topic>biosynthesis</topic><topic>cysteine</topic><topic>genes</topic><topic>glutathione</topic><topic>Humans</topic><topic>hydrogen sulfide</topic><topic>Hydrogen Sulfide - chemistry</topic><topic>Hydrogen Sulfide - metabolism</topic><topic>metabolites</topic><topic>Neoplasm Proteins - chemistry</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>phylogeny</topic><topic>prokaryotic cells</topic><topic>Protein Structure, Tertiary</topic><topic>proteins</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>sequence homology</topic><topic>Structural Homology, Protein</topic><topic>sulfur</topic><topic>thermodynamics</topic><topic>thiosulfate sulfurtransferase</topic><topic>thiosulfates</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melideo, Scott L</creatorcontrib><creatorcontrib>Jackson, Michael R</creatorcontrib><creatorcontrib>Jorns, Marilyn Schuman</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melideo, Scott L</au><au>Jackson, Michael R</au><au>Jorns, Marilyn Schuman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biosynthesis of a Central Intermediate in Hydrogen Sulfide Metabolism by a Novel Human Sulfurtransferase and Its Yeast Ortholog</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2014-07-22</date><risdate>2014</risdate><volume>53</volume><issue>28</issue><spage>4739</spage><epage>4753</epage><pages>4739-4753</pages><issn>0006-2960</issn><issn>1520-4995</issn><eissn>1520-4995</eissn><abstract>Human sulfide:quinone oxidoreductase (SQOR) catalyzes the conversion of H2S to thiosulfate, the first step in mammalian H2S metabolism. SQOR’s inability to produce the glutathione persulfide (GSS–) substrate for sulfur dioxygenase (SDO) suggested that a thiosulfate:glutathione sulfurtransferase (TST) was required to provide the missing link between the SQOR and SDO reactions. Although TST could be purified from yeast, attempts to isolate the mammalian enzyme were not successful. We used bioinformatic approaches to identify genes likely to encode human TST (TSTD1) and its yeast ortholog (RDL1). Recombinant TSTD1 and RDL1 catalyze a predicted thiosulfate-dependent conversion of glutathione to GSS–. Both enzymes contain a rhodanese homology domain and a single catalytically essential cysteine, which is converted to cysteine persulfide upon reaction with thiosulfate. GSS– is a potent inhibitor of TSTD1 and RDL1, as judged by initial rate accelerations and ≥25-fold lower K m values for glutathione observed in the presence of SDO. The combined action of GSS– and SDO is likely to regulate the biosynthesis of the reactive metabolite. SDO drives to completion p-toluenethiosulfonate:glutathione sulfurtransferase reactions catalyzed by TSTD1 and RDL1. The thermodynamic coupling of the irreversible SDO and reversible TST reactions provides a model for the physiologically relevant reaction with thiosulfate as the sulfane donor. The discovery of bacterial Rosetta Stone proteins that comprise fusions of SDO and TSTD1 provides phylogenetic evidence of the association of these enzymes. The presence of adjacent bacterial genes encoding SDO–TSTD1 fusion proteins and human-like SQORs suggests these prokaryotes and mammals exhibit strikingly similar pathways for H2S metabolism.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24981631</pmid><doi>10.1021/bi500650h</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2014-07, Vol.53 (28), p.4739-4753
issn 0006-2960
1520-4995
1520-4995
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4108183
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects bioinformatics
biosynthesis
cysteine
genes
glutathione
Humans
hydrogen sulfide
Hydrogen Sulfide - chemistry
Hydrogen Sulfide - metabolism
metabolites
Neoplasm Proteins - chemistry
Neoplasm Proteins - genetics
Neoplasm Proteins - metabolism
phylogeny
prokaryotic cells
Protein Structure, Tertiary
proteins
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
sequence homology
Structural Homology, Protein
sulfur
thermodynamics
thiosulfate sulfurtransferase
thiosulfates
yeasts
title Biosynthesis of a Central Intermediate in Hydrogen Sulfide Metabolism by a Novel Human Sulfurtransferase and Its Yeast Ortholog
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biosynthesis%20of%20a%20Central%20Intermediate%20in%20Hydrogen%20Sulfide%20Metabolism%20by%20a%20Novel%20Human%20Sulfurtransferase%20and%20Its%20Yeast%20Ortholog&rft.jtitle=Biochemistry%20(Easton)&rft.au=Melideo,%20Scott%20L&rft.date=2014-07-22&rft.volume=53&rft.issue=28&rft.spage=4739&rft.epage=4753&rft.pages=4739-4753&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi500650h&rft_dat=%3Cproquest_pubme%3E1836642684%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a504t-1969fbe1573f5e6d57e646c0f8f00f032d33a122d8213b565662f9993f86c9203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1836642684&rft_id=info:pmid/24981631&rfr_iscdi=true