Loading…
Subthalamic Nucleus Deep Brain Stimulation Induces Motor Network BOLD Activation: Use of a High Precision MRI Guided Stereotactic System for Nonhuman Primates
Abstract Background Functional magnetic resonance imaging (fMRI) is a powerful method for identifying in vivo network activation evoked by deep brain stimulation (DBS). Objective Identify the global neural circuitry effect of subthalamic nucleus (STN) DBS in nonhuman primates (NHP). Method An in-hou...
Saved in:
Published in: | Brain stimulation 2014-07, Vol.7 (4), p.603-607 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Background Functional magnetic resonance imaging (fMRI) is a powerful method for identifying in vivo network activation evoked by deep brain stimulation (DBS). Objective Identify the global neural circuitry effect of subthalamic nucleus (STN) DBS in nonhuman primates (NHP). Method An in-house developed MR image-guided stereotactic targeting system delivered a mini-DBS stimulating electrode, and blood oxygenation level-dependent (BOLD) activation during STN DBS in healthy NHP was measured by combining fMRI with a normalized functional activation map and general linear modeling. Results STN DBS significantly increased BOLD activation in the sensorimotor cortex, supplementary motor area, caudate nucleus, pedunculopontine nucleus, cingulate, insular cortex, and cerebellum (FDR |
---|---|
ISSN: | 1935-861X 1876-4754 |
DOI: | 10.1016/j.brs.2014.04.007 |