Loading…
New Region-Scalable Discriminant and Fitting Energy Functional for Driving Geometric Active Contours in Medical Image Segmentation
We propose a novel region-based geometric active contour model that uses region-scalable discriminant and fitting energy functional for handling the intensity inhomogeneity and weak boundary problems in medical image segmentation. The region-scalable discriminant and fitting energy functional is def...
Saved in:
Published in: | Computational and mathematical methods in medicine 2014-01, Vol.2014 (2014), p.1-13 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-2ebcef8ae98df75520ef386db304613be62b429c4edb12e0fc5049803f238b4c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-2ebcef8ae98df75520ef386db304613be62b429c4edb12e0fc5049803f238b4c3 |
container_end_page | 13 |
container_issue | 2014 |
container_start_page | 1 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2014 |
creator | Wang, Xuchu Niu, Yanmin Tan, Liwen Zhang, Shao-Xiang |
description | We propose a novel region-based geometric active contour model that uses region-scalable discriminant and fitting energy functional for handling the intensity inhomogeneity and weak boundary problems in medical image segmentation. The region-scalable discriminant and fitting energy functional is defined to capture the image intensity characteristics in local and global regions for driving the evolution of active contour. The discriminant term in the model aims at separating background and foreground in scalable regions while the fitting term tends to fit the intensity in these regions. This model is then transformed into a variational level set formulation with a level set regularization term for accurate computation. The new model utilizes intensity information in the local and global regions as much as possible; so it not only handles better intensity inhomogeneity, but also allows more robustness to noise and more flexible initialization in comparison to the original global region and regional-scalable based models. Experimental results for synthetic and real medical image segmentation show the advantages of the proposed method in terms of accuracy and robustness. |
doi_str_mv | 10.1155/2014/357684 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4109108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1552808490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-2ebcef8ae98df75520ef386db304613be62b429c4edb12e0fc5049803f238b4c3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiNERUvLiTPIRwQK9WfiXCpV226pVKhEQeJmOc44NUrsYidb9covx6u0Kzhxsq15_MzYb1G8JvgjIUIcU0z4MRN1Jfmz4oDUXJZVTeTz3R7_2C9epvQTY0FqQV4U-1QQkg_soPj9Be7RV-hd8OWN0YNuB0BnLpnoRue1n5D2HVq7aXK-R-ceYv-A1rM3U76hB2RDRGfRbbbVCwgjTNEZdJrLG0Cr4Kcwx4ScR5-hc9mPLkfdA7qBfgQ_6a3lqNizekjw6nE9LL6vz7-tPpVX1xeXq9Or0nAmp5JCa8BKDY3sbC0ExWCZrLqWYV4R1kJFW04bw6FrCQVsjcC8kZhZymTLDTssThbv3dyO0JncP-pB3eWX6viggnbq34p3t6oPG8UJbgiWWfDuURDDrxnSpMb8UTAM2kOYk8phUIklb3BGPyyoiSGlCHbXhmC1TU1tU1NLapl--_dkO_Yppgy8X4Bb5zt97_5je7PAkBGwegfzSgjO2B_diKua</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552808490</pqid></control><display><type>article</type><title>New Region-Scalable Discriminant and Fitting Energy Functional for Driving Geometric Active Contours in Medical Image Segmentation</title><source>Wiley Online Library Open Access</source><creator>Wang, Xuchu ; Niu, Yanmin ; Tan, Liwen ; Zhang, Shao-Xiang</creator><contributor>Durai, Kumar</contributor><creatorcontrib>Wang, Xuchu ; Niu, Yanmin ; Tan, Liwen ; Zhang, Shao-Xiang ; Durai, Kumar</creatorcontrib><description>We propose a novel region-based geometric active contour model that uses region-scalable discriminant and fitting energy functional for handling the intensity inhomogeneity and weak boundary problems in medical image segmentation. The region-scalable discriminant and fitting energy functional is defined to capture the image intensity characteristics in local and global regions for driving the evolution of active contour. The discriminant term in the model aims at separating background and foreground in scalable regions while the fitting term tends to fit the intensity in these regions. This model is then transformed into a variational level set formulation with a level set regularization term for accurate computation. The new model utilizes intensity information in the local and global regions as much as possible; so it not only handles better intensity inhomogeneity, but also allows more robustness to noise and more flexible initialization in comparison to the original global region and regional-scalable based models. Experimental results for synthetic and real medical image segmentation show the advantages of the proposed method in terms of accuracy and robustness.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2014/357684</identifier><identifier>PMID: 25110513</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Algorithms ; Artificial Intelligence ; Brain - diagnostic imaging ; Brain - pathology ; Brain Mapping - methods ; Humans ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Models, Statistical ; Pattern Recognition, Automated - methods ; Radiographic Image Interpretation, Computer-Assisted ; Reproducibility of Results ; Software ; X-Rays</subject><ispartof>Computational and mathematical methods in medicine, 2014-01, Vol.2014 (2014), p.1-13</ispartof><rights>Copyright © 2014 Xuchu Wang et al.</rights><rights>Copyright © 2014 Xuchu Wang et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-2ebcef8ae98df75520ef386db304613be62b429c4edb12e0fc5049803f238b4c3</citedby><cites>FETCH-LOGICAL-c438t-2ebcef8ae98df75520ef386db304613be62b429c4edb12e0fc5049803f238b4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25110513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Durai, Kumar</contributor><creatorcontrib>Wang, Xuchu</creatorcontrib><creatorcontrib>Niu, Yanmin</creatorcontrib><creatorcontrib>Tan, Liwen</creatorcontrib><creatorcontrib>Zhang, Shao-Xiang</creatorcontrib><title>New Region-Scalable Discriminant and Fitting Energy Functional for Driving Geometric Active Contours in Medical Image Segmentation</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>We propose a novel region-based geometric active contour model that uses region-scalable discriminant and fitting energy functional for handling the intensity inhomogeneity and weak boundary problems in medical image segmentation. The region-scalable discriminant and fitting energy functional is defined to capture the image intensity characteristics in local and global regions for driving the evolution of active contour. The discriminant term in the model aims at separating background and foreground in scalable regions while the fitting term tends to fit the intensity in these regions. This model is then transformed into a variational level set formulation with a level set regularization term for accurate computation. The new model utilizes intensity information in the local and global regions as much as possible; so it not only handles better intensity inhomogeneity, but also allows more robustness to noise and more flexible initialization in comparison to the original global region and regional-scalable based models. Experimental results for synthetic and real medical image segmentation show the advantages of the proposed method in terms of accuracy and robustness.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - pathology</subject><subject>Brain Mapping - methods</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Models, Statistical</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Radiographic Image Interpretation, Computer-Assisted</subject><subject>Reproducibility of Results</subject><subject>Software</subject><subject>X-Rays</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhiNERUvLiTPIRwQK9WfiXCpV226pVKhEQeJmOc44NUrsYidb9covx6u0Kzhxsq15_MzYb1G8JvgjIUIcU0z4MRN1Jfmz4oDUXJZVTeTz3R7_2C9epvQTY0FqQV4U-1QQkg_soPj9Be7RV-hd8OWN0YNuB0BnLpnoRue1n5D2HVq7aXK-R-ceYv-A1rM3U76hB2RDRGfRbbbVCwgjTNEZdJrLG0Cr4Kcwx4ScR5-hc9mPLkfdA7qBfgQ_6a3lqNizekjw6nE9LL6vz7-tPpVX1xeXq9Or0nAmp5JCa8BKDY3sbC0ExWCZrLqWYV4R1kJFW04bw6FrCQVsjcC8kZhZymTLDTssThbv3dyO0JncP-pB3eWX6viggnbq34p3t6oPG8UJbgiWWfDuURDDrxnSpMb8UTAM2kOYk8phUIklb3BGPyyoiSGlCHbXhmC1TU1tU1NLapl--_dkO_Yppgy8X4Bb5zt97_5je7PAkBGwegfzSgjO2B_diKua</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Wang, Xuchu</creator><creator>Niu, Yanmin</creator><creator>Tan, Liwen</creator><creator>Zhang, Shao-Xiang</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>New Region-Scalable Discriminant and Fitting Energy Functional for Driving Geometric Active Contours in Medical Image Segmentation</title><author>Wang, Xuchu ; Niu, Yanmin ; Tan, Liwen ; Zhang, Shao-Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-2ebcef8ae98df75520ef386db304613be62b429c4edb12e0fc5049803f238b4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - pathology</topic><topic>Brain Mapping - methods</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Models, Statistical</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Radiographic Image Interpretation, Computer-Assisted</topic><topic>Reproducibility of Results</topic><topic>Software</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xuchu</creatorcontrib><creatorcontrib>Niu, Yanmin</creatorcontrib><creatorcontrib>Tan, Liwen</creatorcontrib><creatorcontrib>Zhang, Shao-Xiang</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xuchu</au><au>Niu, Yanmin</au><au>Tan, Liwen</au><au>Zhang, Shao-Xiang</au><au>Durai, Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Region-Scalable Discriminant and Fitting Energy Functional for Driving Geometric Active Contours in Medical Image Segmentation</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>We propose a novel region-based geometric active contour model that uses region-scalable discriminant and fitting energy functional for handling the intensity inhomogeneity and weak boundary problems in medical image segmentation. The region-scalable discriminant and fitting energy functional is defined to capture the image intensity characteristics in local and global regions for driving the evolution of active contour. The discriminant term in the model aims at separating background and foreground in scalable regions while the fitting term tends to fit the intensity in these regions. This model is then transformed into a variational level set formulation with a level set regularization term for accurate computation. The new model utilizes intensity information in the local and global regions as much as possible; so it not only handles better intensity inhomogeneity, but also allows more robustness to noise and more flexible initialization in comparison to the original global region and regional-scalable based models. Experimental results for synthetic and real medical image segmentation show the advantages of the proposed method in terms of accuracy and robustness.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>25110513</pmid><doi>10.1155/2014/357684</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2014-01, Vol.2014 (2014), p.1-13 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4109108 |
source | Wiley Online Library Open Access |
subjects | Algorithms Artificial Intelligence Brain - diagnostic imaging Brain - pathology Brain Mapping - methods Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Models, Statistical Pattern Recognition, Automated - methods Radiographic Image Interpretation, Computer-Assisted Reproducibility of Results Software X-Rays |
title | New Region-Scalable Discriminant and Fitting Energy Functional for Driving Geometric Active Contours in Medical Image Segmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A12%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Region-Scalable%20Discriminant%20and%20Fitting%20Energy%20Functional%20for%20Driving%20Geometric%20Active%20Contours%20in%20Medical%20Image%20Segmentation&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Wang,%20Xuchu&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2014/357684&rft_dat=%3Cproquest_pubme%3E1552808490%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-2ebcef8ae98df75520ef386db304613be62b429c4edb12e0fc5049803f238b4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1552808490&rft_id=info:pmid/25110513&rfr_iscdi=true |