Loading…

New Region-Scalable Discriminant and Fitting Energy Functional for Driving Geometric Active Contours in Medical Image Segmentation

We propose a novel region-based geometric active contour model that uses region-scalable discriminant and fitting energy functional for handling the intensity inhomogeneity and weak boundary problems in medical image segmentation. The region-scalable discriminant and fitting energy functional is def...

Full description

Saved in:
Bibliographic Details
Published in:Computational and mathematical methods in medicine 2014-01, Vol.2014 (2014), p.1-13
Main Authors: Wang, Xuchu, Niu, Yanmin, Tan, Liwen, Zhang, Shao-Xiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-2ebcef8ae98df75520ef386db304613be62b429c4edb12e0fc5049803f238b4c3
cites cdi_FETCH-LOGICAL-c438t-2ebcef8ae98df75520ef386db304613be62b429c4edb12e0fc5049803f238b4c3
container_end_page 13
container_issue 2014
container_start_page 1
container_title Computational and mathematical methods in medicine
container_volume 2014
creator Wang, Xuchu
Niu, Yanmin
Tan, Liwen
Zhang, Shao-Xiang
description We propose a novel region-based geometric active contour model that uses region-scalable discriminant and fitting energy functional for handling the intensity inhomogeneity and weak boundary problems in medical image segmentation. The region-scalable discriminant and fitting energy functional is defined to capture the image intensity characteristics in local and global regions for driving the evolution of active contour. The discriminant term in the model aims at separating background and foreground in scalable regions while the fitting term tends to fit the intensity in these regions. This model is then transformed into a variational level set formulation with a level set regularization term for accurate computation. The new model utilizes intensity information in the local and global regions as much as possible; so it not only handles better intensity inhomogeneity, but also allows more robustness to noise and more flexible initialization in comparison to the original global region and regional-scalable based models. Experimental results for synthetic and real medical image segmentation show the advantages of the proposed method in terms of accuracy and robustness.
doi_str_mv 10.1155/2014/357684
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4109108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1552808490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-2ebcef8ae98df75520ef386db304613be62b429c4edb12e0fc5049803f238b4c3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiNERUvLiTPIRwQK9WfiXCpV226pVKhEQeJmOc44NUrsYidb9covx6u0Kzhxsq15_MzYb1G8JvgjIUIcU0z4MRN1Jfmz4oDUXJZVTeTz3R7_2C9epvQTY0FqQV4U-1QQkg_soPj9Be7RV-hd8OWN0YNuB0BnLpnoRue1n5D2HVq7aXK-R-ceYv-A1rM3U76hB2RDRGfRbbbVCwgjTNEZdJrLG0Cr4Kcwx4ScR5-hc9mPLkfdA7qBfgQ_6a3lqNizekjw6nE9LL6vz7-tPpVX1xeXq9Or0nAmp5JCa8BKDY3sbC0ExWCZrLqWYV4R1kJFW04bw6FrCQVsjcC8kZhZymTLDTssThbv3dyO0JncP-pB3eWX6viggnbq34p3t6oPG8UJbgiWWfDuURDDrxnSpMb8UTAM2kOYk8phUIklb3BGPyyoiSGlCHbXhmC1TU1tU1NLapl--_dkO_Yppgy8X4Bb5zt97_5je7PAkBGwegfzSgjO2B_diKua</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552808490</pqid></control><display><type>article</type><title>New Region-Scalable Discriminant and Fitting Energy Functional for Driving Geometric Active Contours in Medical Image Segmentation</title><source>Wiley Online Library Open Access</source><creator>Wang, Xuchu ; Niu, Yanmin ; Tan, Liwen ; Zhang, Shao-Xiang</creator><contributor>Durai, Kumar</contributor><creatorcontrib>Wang, Xuchu ; Niu, Yanmin ; Tan, Liwen ; Zhang, Shao-Xiang ; Durai, Kumar</creatorcontrib><description>We propose a novel region-based geometric active contour model that uses region-scalable discriminant and fitting energy functional for handling the intensity inhomogeneity and weak boundary problems in medical image segmentation. The region-scalable discriminant and fitting energy functional is defined to capture the image intensity characteristics in local and global regions for driving the evolution of active contour. The discriminant term in the model aims at separating background and foreground in scalable regions while the fitting term tends to fit the intensity in these regions. This model is then transformed into a variational level set formulation with a level set regularization term for accurate computation. The new model utilizes intensity information in the local and global regions as much as possible; so it not only handles better intensity inhomogeneity, but also allows more robustness to noise and more flexible initialization in comparison to the original global region and regional-scalable based models. Experimental results for synthetic and real medical image segmentation show the advantages of the proposed method in terms of accuracy and robustness.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2014/357684</identifier><identifier>PMID: 25110513</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Algorithms ; Artificial Intelligence ; Brain - diagnostic imaging ; Brain - pathology ; Brain Mapping - methods ; Humans ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Models, Statistical ; Pattern Recognition, Automated - methods ; Radiographic Image Interpretation, Computer-Assisted ; Reproducibility of Results ; Software ; X-Rays</subject><ispartof>Computational and mathematical methods in medicine, 2014-01, Vol.2014 (2014), p.1-13</ispartof><rights>Copyright © 2014 Xuchu Wang et al.</rights><rights>Copyright © 2014 Xuchu Wang et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-2ebcef8ae98df75520ef386db304613be62b429c4edb12e0fc5049803f238b4c3</citedby><cites>FETCH-LOGICAL-c438t-2ebcef8ae98df75520ef386db304613be62b429c4edb12e0fc5049803f238b4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25110513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Durai, Kumar</contributor><creatorcontrib>Wang, Xuchu</creatorcontrib><creatorcontrib>Niu, Yanmin</creatorcontrib><creatorcontrib>Tan, Liwen</creatorcontrib><creatorcontrib>Zhang, Shao-Xiang</creatorcontrib><title>New Region-Scalable Discriminant and Fitting Energy Functional for Driving Geometric Active Contours in Medical Image Segmentation</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>We propose a novel region-based geometric active contour model that uses region-scalable discriminant and fitting energy functional for handling the intensity inhomogeneity and weak boundary problems in medical image segmentation. The region-scalable discriminant and fitting energy functional is defined to capture the image intensity characteristics in local and global regions for driving the evolution of active contour. The discriminant term in the model aims at separating background and foreground in scalable regions while the fitting term tends to fit the intensity in these regions. This model is then transformed into a variational level set formulation with a level set regularization term for accurate computation. The new model utilizes intensity information in the local and global regions as much as possible; so it not only handles better intensity inhomogeneity, but also allows more robustness to noise and more flexible initialization in comparison to the original global region and regional-scalable based models. Experimental results for synthetic and real medical image segmentation show the advantages of the proposed method in terms of accuracy and robustness.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - pathology</subject><subject>Brain Mapping - methods</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Models, Statistical</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Radiographic Image Interpretation, Computer-Assisted</subject><subject>Reproducibility of Results</subject><subject>Software</subject><subject>X-Rays</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhiNERUvLiTPIRwQK9WfiXCpV226pVKhEQeJmOc44NUrsYidb9covx6u0Kzhxsq15_MzYb1G8JvgjIUIcU0z4MRN1Jfmz4oDUXJZVTeTz3R7_2C9epvQTY0FqQV4U-1QQkg_soPj9Be7RV-hd8OWN0YNuB0BnLpnoRue1n5D2HVq7aXK-R-ceYv-A1rM3U76hB2RDRGfRbbbVCwgjTNEZdJrLG0Cr4Kcwx4ScR5-hc9mPLkfdA7qBfgQ_6a3lqNizekjw6nE9LL6vz7-tPpVX1xeXq9Or0nAmp5JCa8BKDY3sbC0ExWCZrLqWYV4R1kJFW04bw6FrCQVsjcC8kZhZymTLDTssThbv3dyO0JncP-pB3eWX6viggnbq34p3t6oPG8UJbgiWWfDuURDDrxnSpMb8UTAM2kOYk8phUIklb3BGPyyoiSGlCHbXhmC1TU1tU1NLapl--_dkO_Yppgy8X4Bb5zt97_5je7PAkBGwegfzSgjO2B_diKua</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Wang, Xuchu</creator><creator>Niu, Yanmin</creator><creator>Tan, Liwen</creator><creator>Zhang, Shao-Xiang</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>New Region-Scalable Discriminant and Fitting Energy Functional for Driving Geometric Active Contours in Medical Image Segmentation</title><author>Wang, Xuchu ; Niu, Yanmin ; Tan, Liwen ; Zhang, Shao-Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-2ebcef8ae98df75520ef386db304613be62b429c4edb12e0fc5049803f238b4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - pathology</topic><topic>Brain Mapping - methods</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Models, Statistical</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Radiographic Image Interpretation, Computer-Assisted</topic><topic>Reproducibility of Results</topic><topic>Software</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xuchu</creatorcontrib><creatorcontrib>Niu, Yanmin</creatorcontrib><creatorcontrib>Tan, Liwen</creatorcontrib><creatorcontrib>Zhang, Shao-Xiang</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xuchu</au><au>Niu, Yanmin</au><au>Tan, Liwen</au><au>Zhang, Shao-Xiang</au><au>Durai, Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Region-Scalable Discriminant and Fitting Energy Functional for Driving Geometric Active Contours in Medical Image Segmentation</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>We propose a novel region-based geometric active contour model that uses region-scalable discriminant and fitting energy functional for handling the intensity inhomogeneity and weak boundary problems in medical image segmentation. The region-scalable discriminant and fitting energy functional is defined to capture the image intensity characteristics in local and global regions for driving the evolution of active contour. The discriminant term in the model aims at separating background and foreground in scalable regions while the fitting term tends to fit the intensity in these regions. This model is then transformed into a variational level set formulation with a level set regularization term for accurate computation. The new model utilizes intensity information in the local and global regions as much as possible; so it not only handles better intensity inhomogeneity, but also allows more robustness to noise and more flexible initialization in comparison to the original global region and regional-scalable based models. Experimental results for synthetic and real medical image segmentation show the advantages of the proposed method in terms of accuracy and robustness.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>25110513</pmid><doi>10.1155/2014/357684</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2014-01, Vol.2014 (2014), p.1-13
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4109108
source Wiley Online Library Open Access
subjects Algorithms
Artificial Intelligence
Brain - diagnostic imaging
Brain - pathology
Brain Mapping - methods
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Models, Statistical
Pattern Recognition, Automated - methods
Radiographic Image Interpretation, Computer-Assisted
Reproducibility of Results
Software
X-Rays
title New Region-Scalable Discriminant and Fitting Energy Functional for Driving Geometric Active Contours in Medical Image Segmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A12%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Region-Scalable%20Discriminant%20and%20Fitting%20Energy%20Functional%20for%20Driving%20Geometric%20Active%20Contours%20in%20Medical%20Image%20Segmentation&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Wang,%20Xuchu&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2014/357684&rft_dat=%3Cproquest_pubme%3E1552808490%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-2ebcef8ae98df75520ef386db304613be62b429c4edb12e0fc5049803f238b4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1552808490&rft_id=info:pmid/25110513&rfr_iscdi=true